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PREFACE

When asked if ants had common sense, Edward O. Wilson, the famed
Harvard entomologist, two-time Pulitzer prizewinner and father of
sociobiology, replied: “If common sense means living by a set of rules
of thumb that have worked well in the past, but living without
examining those rules too closely or in detail, then, yes, ants have
common sense.” Surprise is what happens when common sense fails.
Wilson'’s criterion emphasizes the point that what's involved in a
surprise is intimately tied up with the idea of acting in accordance
with a set of rules. When the rules of reality generating the events of
daily life part company with the rules of thumb built upon everyday
common sense, surprise is the outcome. This is a book about those
rules of reality, their form, nature and idiosyncrasies. In particular, it
is a2 book examining the degree to which we can aspire to the creation
of a “science of surprise.”

In everyday parlance, the word surprise represents the difference
between expectations and reality; the gap between our assumptions
and expectations about worldly events and the way those events
actually turn out. In essence, surprises are the end result of predictions
that fail. So to address the root causes of surprise, we're inevitably
forced to look at how we go about making predictions.
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Normally, predictions are made by following some kind of rule.
Here’s an example: “I predict that the Dow Jones Industrial Average
will be higher at the end of the year than at the beginning if a team
from the old National Football League is the winner of the Super Bowl
game in January.” This is the so-called Super Bowl Indicator for stock
price fluctuations on the New York Stock Exchange.

The Super Bowl Indicator is an example of an explicit rule for
making a prediction. Such rules are exemplified by doing a calculation.

But there are also implicit rules, where we follow a hunch or make °

an intuitive leap of faith. In these cases, the cognitive rule we're using
may be unknown to us even as we employ it. But in either case, if
the rule we employ proves useful enough over a long period of time,
we often give it a name, calling it something like a rule of thumb,
conventional wisdom, an old wives’ tale or just plain common sense.
Surprises occur when following such rules leads to predictions that
fail to match up to reality. Our task in this volume is to look at why
the rules obeyed by nature and man have a disconcerting tendency
to differ from those we've leamned to use over several lifetimes’ worth
of experience. Now let me discuss briefly the structure of the book.

Somewhere in the middle of the film Casablanca, Rick and Ilse
have the following exchange:

ILSE: Can I tell you a story, Rick?

Rick: Has it got a wow finish?

IisE: I don’t know the finish yet.

RICK: Well, go on, tell it. Maybe one’ll come to you as you go along.

I felt much the same way while writing this book. And, like Ilse, I still
don’t know the finish. But no matter. Like most journeys, the trip is
far more interesting than the destination.

It's often been noted that the rules of reality are subtle—but not
malicious. These subtleties, however, take many forms, each of which
may give rise to its own characteristic brand of surprise. This volume
addresses several surprise-generating mechanisms responsible for our
inability to make good predictions about what the systems of nature
and humankind are going to do next and why. Chaos is one such
mechanism, but there are others—catastrophes (instability), uncom-
putability, irreducibility and emergence—each of which is the focus
of a chapter of this book. Within each chapter we examine the
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system-theoretic reasons why we will never be able to eliminate

” surprise from our lives, yet can still hold out the possibility of creating

something approximating a science of the surprising.

It's my hope the book will underscore the fact that systems
displaying surprising (i.e., unpredictable) behavior are more or less
synonymous with those we regard as being in some way “complex.”
So the reader should see the book as both an exposition of the science
of surprise and an introduction to the mysteries and peculiarities of
complex, as opposed to simple, systems.

In my earlier volumes, Paradigms Lost and Searching for Centainty,
I learned the value of comments, complaints and a frank exchange o;’
views from readers. So again I warmly encourage readers who feel
the need to drop me a note with their reactions to the ideas presented
here. These remarks should be addressed to me c/o Santa Fe Institute
1660 Old Pecos Trail, Santa Fe, NM 87501, USA. ,

JC
Santa Fe, 1993
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THE SIMPLE AND
THE COMPLEX

Realities, Rules and Surprises

Trying 1o define yourself is like trying to bite your own teeth.
—ALAN WATTS

The medium is the message.
—MARSHALL MCLUHAN

Some problems are just too complicated for rational, logical
solutions. They admit of insights, not answers.
—JEROME WIESNER

IN THE BEGINNING IS THE WOR(LID

A few years ago I made an extended lecture tour of Japan. Due to the
press of other responsibilities, my wife was unable to accompany me
on this trip. This sad fact happened to come up one night at a dinner
party shortly before my departure, whereupon one of our friends
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remarked, “Well, dear, you know what they say. Absence makes the
heart grow fonder.” By way of counterpoint, one of the other guests
immediately stepped in with the rejoinder, “But they also say, ‘Out of
sight, out of mind.”” So what kind of sense—common or otherwise—
can be squeezed out of either of these mutually contradictory prov-
erbs? Or are they completely useless as far as offering a glimmer of
insight into how my wife or I were likely to feel during that period of
prolonged separation? In 1986, British psychologist Karl Teigen con-
cocted an ingenious experiment to try to find out.

Teigen’s experiment involved taking twenty-four well-known prov-
etbs and transforming each of them into its opposite. So, for example,
the proverb from the dinner party, “Out of sight, out of mind,” became
“Absence makes the heart grow fonder.” Teigen then gave his students
lists containing some genuine proverbs intermingled with those he
had just formulated by this mirror-imaging process. He then asked the
students to rate the proverbs for both originality and truth value. If
you've already guessed the results, then you're just about half a step
ahead of me. As one might have expected, the students could find no
recognizable difference between one set of eternal truths and their
opposites. In short, almost any observation—or its opposite—can be
taken as a pithy encapsulation of everyday, garden-variety common
sense.

In a set of related observations, the editor and writer Edward Tenner
recently asked, Why do the seats seem to get smaller as the airplanes
get larger? And why does voice mail seem to double the time it takes
to complete a telephone call? Tenner's answer is what he calis the
“revenge effect,” the process by which an indifferent nature seems to
get even with us lowly humans by twisting our cleverness back against
us. While facing unintended consequences from our mucking about
as we try to make things better is hardly a new phenomenon, Tenner
notes that technology has magnified the effect to the point where we
now have to weigh the potential consequences of our actions more
carefully than ever before. ‘

Both of these stories illustrate ways in which common sense seems
to lead us to conclusions that are at variance with the way we think
the world should work—sways based on beliefs we create from a
lifetime’s worth of observations and experience. The problem is that
there's often a Grand Canyon-sized chasm between what we think
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and what is actually the case. And it's when this gap becomes too
large for comfort that science and its many competitors in the
reality-generation game—religion, art, music, mysticism—enter the
scene. In all cases, what we're looking for is some way to compress
our observations into a small set of easily digestible rules, or models,
that will serve as guides to what we should expect and what we should
do in an increasingly complex, hard-to-understand world.

Our goal in this book is to look at various types of complicated
structures and counterintuitive behaviors, keeping an eye out for
common features that could form the basis for a “science” of the
surprising and the complex. Of course, in everyday terms the word
surprise is just shorthand for the way we feel upon discovering that
our pictures of reality depart from reality itself. So the crux of the
problem of understanding the origin and nature of surprise resides in
asking how those pictures of reality are formed in the first place. In
science, the chosen way to paint a picture of reality is to build a model,
often expressed in the compact language of mathematics. We try to
encode our experiences of the real world into the symbols and rules
of a mathematical formalism, and then make use of this formalism to
generate predictions of what will transpire in the future. So from a
scientific point of view, surprise can arise only as a consequence of
models that are unfaithful to nature.

But models can fail to be true to reality in a number of inequivalent
ways. They can display complicated, chaotic behavior, making it
difficult to use them to generate accurate predictions; they may be
unstable, so that minuscule changes in one part of the model give rise
to very large changes in the model’s predictions; they may involve
quantities that are just plain uncomputable, even in principle; they
may involve hard-to-understand linkages among the various parts of
the model, connections that prevent us from analyzing the behavior
of the model by breaking it into smaller, more digestible pieces. It's
surprise-generating mechanisms like these that constitute the multiple
foci of our deliberations in this volume. Everyone will admit that
surprises can and often do occur; this much is pretty obvious. But here
we set our sights a bit higher, trying to understand why surprises occur
and whether or not there’s anything we can do about them. Moreover,
it’s a scientific understanding of the ways and whys of the world that
we're after, not merely anecdotal accounts. So with these goals in
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mind, the natural starting point for our attack on surprise and
“complexification” is at the level of observations themselves and how
these observations get transformed into measurements and models.

Observations, Numbers and Models

As it’s taught in courses on the philosophy of science, the scientific
answer to a question is a set of rules, or as such rules are more
commonly termed, a model. To illustrate, suppose you ask why a
mixture of two parts hydrogen and one part oxygen forms the clear
fluid we call water. A scientific answer invokes a variety of rules from
chemistry and physics describing the molecular structure of hydrogen
and oxygen, together with another set of principles (or rules) for how
two atomic structures fit together to produce a compound substance.
And if we are so bold as to introduce symbols like H and O to represent
a hydrogen and an oxygen atom, respectively, the end result of these
rules can be compactly written down in symbolic form as H2 + O -
H?0.

This expression is a particularly crude form of what might charitably
be called a model to explain the formation of water from hydrogen
and oxygen. But note that the starting point of the scientific explana-
tion was the wholly unexpected and seemingly unlikely observation
that by combining two rather active gases, we can form not only a
liquid but a liquid whose properties differ radically from the properties
of either of its constituent parts. A detailed model of this reaction then
gives an explanation for this surprising, counterintuitive outcor?e.
Moreover, the set of rules constituting this model might also provide
us with a systematic procedure for predicting what would happen
should we attempt to combine another pair of gases in a similar way.
Note carefully in the above setup that the starting point of the whole
exercise was the crucial observation that hydrogen and oxygen can
be combined in a certain way to form water. Without this observation,
there’s no place for science or any other reality-generation mechanism
to get a foothold.

So what do we mean by an observation? In everyday parlance, an
observation is just the memory trace left behind in our brains when
the outside world impresses itself upon us via our sensory channels
of sight, sound, touch, smell or taste. So, for instance, the sickly sweet
smell of buming incense, the tangy taste of barbecued spareribs and
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the blinding flash of a lightning bolt all qualify as observations. In
science we usually try to code these memories by numbers, mostly
for the sake of compactness and so that we will have a common scale
by which to compare different observations. This kind of coding also

- has the salutary side effect of providing the basis for representing the

observations in symbols, hence allowing us to encode the world in
stylized mathematical terms.

But as anyone who'’s ever tried carrying out such quantification
knows, the translation of an observation into a measurement is a
delicate and subtle matter indeed. And, in fact, the transition from
sights and sounds to symbols and numbers is one that those of a
humanistic bent claim cannot be meaningfully carried out beyond the
cozy confines of a physics lab or, perhaps, the floor of the stock
exchange. I'll leave it to the reader to judge the validity of these claims
as we proceed. For now, let it suffice to say that there’s a lot of
misunderstanding on both sides of the humanist/scientist divide
regarding this point (and a lot of other points as well). I hope a clearer
picture of both the possibilities and limitations of quantification will
emerge over the next few hundred pages.

To see how a model helps us understand what would otherwise
be completely mystifying behavior, consider a pyramid of apples of
the sort on display at any streetcorner fruit-and-produce stand.
Suppose we ask which of the apples in the stack is under the greatest
pressure. Common sense would probably suggest that it’s the apple
at the center of the bottommost layer of the pyramid. Let’s see.

In 1981, Czech scientists J. Schmid and J. Novosad used sensitive
pressure gauges to measure the forces acting at the base of a pile of
sand particles. They discovered the surprising fact that the pressure is
not greatest on the central point of the base at all, but on a ring of
particles some distance from the center of the base. So in our pyramid
of apples, the apple at the center of the base is under the lowest -
pressure of all the apples in the bottom layer. The overall pressure-
versus-height relationship discovered by the Czech researchers is
shown in Figure 1.1.

Recently, Kurt Liffman at the University of Melbourne developed
an “electronic sandpile” inside his computer that attempts to mimic
the kind of real-life sandpile studied by Schmid and Novosad.
Liffman’s set of rules (that is, his program) for the sandpile duplicates
most of the forces seen in the real pile. But as yet it doesn't explain
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FIGURE 1.1. PRESSURE LEVELS IN A SANDPILE

the central dip in downward pressure. So the model is a halfway house
toward understanding the properties of a sandpile. Clearly, there are
still rules of sandpile behavior needed to supplement those forming
Liffman’s model. And whatever these unknown rules tum ogt to be,
industry definitely wants to know about them since it’s of cqn&derable
economic importance to be able to predict when a pile of iron ore or
fertilizer may cake or fragment under its own weight. So here we hfive
a good illustration of the power—and the limitations—of mathematical
and computer models of natural processes. The computer mo.del
predicts and explains some of the important features of the sandpile.
But it leaves untouched the original question of why the central
particle in the base doesn’t experience the greatest pressure.

One of the principal difficulties in making our worlds of symbol§ and
rules match up with the real world of observations and fact§ is the
eternally slippery nature of language, mathematical or otherw1s§. Tbe
philosopher Ludwig Wittgenstein was tormented throughout_hls llfe
by the problem of how to describe the nature of the r.ela}tlonshlp
between words and the objects they represent. Wittgenstein is almost
unique among philosophers in having created two complete schoF)ls
of philosophical thought during his lifetime, the secor.ld of which
completely repudiates the first! Nevertheless, it's the first of these
schools, the so-called picture theory of language, that concerns us
here. .
In his picture theory, Wittgenstein regarded the statements making
up a language as being analogous to a series of pictures. Moreover,
since he assumed that. the logical structure of language mirrors the
logical structure of the real world, it followed that these language
pictures represent possible states of the world. The theory contends
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that linguistic statements are meaningful only when they can be
correlated with actual states of affairs in the world. Observation then
tells us if the statements are true or false. For example, the statement
“Roses are red and bloom in the spring” is meaningful since it
corresponds to an actual state of the world. But the statement “Bloom
roses are the in red and spring” is meaningless within the logical rules
(grammar) of ordinary English since it does not correspond to any
observable state of affairs in the real world.

The main claim of Wittgenstein’s picture theory is that there must
be a link between the logical structure of a given language and the
logical structure of a real-world fact that a statement in that language
asserts. Since this link is itself a relationship in the real world, it’s
reasonable to suppose that there is some way to express the character
and properties of the link using the grammatical rules of the language.
But after years of struggling with exactly how to do this, Wittgenstein
came to the conclusion that the link between the real world and its
expression in language cannot really be “said” at all using language;
rather, it can only be “shown.” We can’t express everything about
language using language itself; somehow we must transcend the
boundaries of language. Thus Wittgenstein says that we cannot really
speak about the world, but only “point.” This idea is well summarized
by the following statement from the penultimate section of the
Tractatus Logico-Philosophicus, the only work of Wittgenstein’s pub-
lished during his lifetime:

My propositions are elucidatory in this way: he who understands
me finally recognizes them as senseless, when he has climbed
out through them, on them, over them. (He must so to speak
throw away the ladder, after he has climbed up on it.)

He must surmount these propositions; then he sees the world
rightly.

To illustrate this perhaps disheartening result, consider the relationship
between a mathematical model of an economy and a set of real-world
observations (measurements) of that economy, things like unemploy-
ment levels, interest rates and money supply. Our first step is to
translate these observations into some language. So, for example, we
might introduce the symbols U, I and M to represent these empirically
observable quantities. If we assume that these symbols are words in
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the language of mathematics, then there is a grammar specifying how
we are allowed to combine them in various ways. For example, we
can write down the sentence U+ I = M, which then serves to model
mathematically the following dubious, but grammatically correct,
relationship: “The sum of the unemployment rate and the interest rate
equals the money supply.” And, if we like, these symbols can be
encoded into the symbols of a computer-programming language,
thereby translating the model from the language of mathematics to
the language of computing machines. What is the relationship be-
tween the logical structure of these symbols within the world of
mathematics and the logical structure of the real-world economic
quantities the symbols represent? This is what we might without
exaggeration term the Fundamental Question of System Modeling.

We have assumed that there is a connection (i.e., a logical structure)
linking the real-world observables unemployment, interest rates and
money supply. We have also assumed there is 2 grammatical linkage
between the symbols U, I and M in the mathematical world (the
grammatically correct mathematical expression U +I=M). The degree
to which this model reflects reality then depends entirely on how the
logical structure of the model and the logical structure of the real-world
observables match up. And it is exactly this relationship that Wittgen-
stein claims cannot be expressed in language (in this case, the
language of mathematics). Instead it can only be shown, perhaps by
pointing out specific instances of unemployment, interest rates and
money supply.

What's important to note here is that the very thing we most care
about—the nature of the relationship between what we see and our
linguistic description of that observation—is exactly what Wittgenstein
says we cannot express in language. And this conclusion holds
regardless of the language used to compose the description, including
the scientific languages of mathematics and computer programs. This
point is of the greatest importance when it comes to distinguishing
what's simple from what’s not, both in nature and in life, since it forms
the basis for the unbridgeable gap between the real world and our
models of that world. So without exaggeration we can state that in
one way or another it's the limits of language that serve as the deep
reason for the emergence of surprises. This theme will be our leitmotif
as we go from topic to topic and example to example throughout the
book. Now let’s look at the closely related issue of how the description
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we use to characterize a real-world object like a word or a number or
a picture colors how complex we think that object might be.

Suppose I give you the two twenty-letter “words”
ABABABABABABABABABAB and QZYRMWERLURLTYCNPBNE.

If T ask which of the two you think is simpler, chances are pretty good
you'll say the first word looks simpler since it has a readily recogniz-
able pattern, namely, a boring repetition of the pair AB. Thus, we can
compactly characterize the first word by the description “Repeat AB
ten times.” And, in fact, essentially this same description would work
equally well even if the word were 20 million or 20 zillion letters long.
By way of contrast, the most compact characterization of the second
word seems to be just the word itself. The cartoon in Figure 1.2
illustrates this point.

This elementary observation forms the basis for most charac-
terizations of the complexity of an object: The complexity is directly
proportional to the length of the shortest possible description of that
object. As a corollary, we can give a rather clear-cut condition for
something to be random (i.e., maximally complex): A string of letters
is random if there is no rule for generating it whose statement is
appreciably shorter—that is, requires fewer letters to write down—
than the string itself. So an object or pattern is random if its shortest
possible description is the object itself. Another way of expressing this
is to say that something is random if it is incompressible. This idea
forms the basis for the theory of algorithmic complexity, of which
we'll have much more to say later in the book.

The idea of using the length of the most compact description to
characterize complexity has far broader currency than just as a way
of speaking about the complexity of a string of letters. After all, words
are strings composed of symbols like, A, B, . . ., Z, just as n;meers
are strings made up of the symbols 0, 1, . . . , 9. Consequently, the
notion of economy of description allows us to talk about the éom—
plexity of patterns of any sort, not just patterns of letters and numbers.
We can consider the complexity of pictures, sculptures, symphonies
and just about any other type of object formed by putting symbols
together in particular ways. And in all of these cases the line of



10 COMPLEXIFICATION

/

A 3

: vt als o, ¢
lt1=2 ¢ E( ‘rﬂﬂ Ea/lw)}x a%
WL, ) E' .
<A‘£.hf9 kvcg:;’tpf G b,

LL# 9

:

o
St

\\

Cotsworth here claims to have found a simpler version

FIGURE 1.2. THE SIMPLE AND THE COMPLICATED

N
AN

demarcation between the simple and the complicated is a fuzzy one,
depending on how hard it is to communicate the pattern of symbf)ls
to someone else using a given language. This is clearly a subjective
matter, influenced by the richness of the chosen language, the
cleverness of the person doing the describing and the listener’s ability
to use and understand the language. So we see that the subjective
everyday notion of complexity is really more a property of the
interaction between two systems than it is an intrinsic aspect of a
system taken in isolation.

Observations and real-world facts are the building blocks from
which we construct our visions of reality. But each of these views is
merely a small slice of reality, basically a piece in a cosmic jigsaw
puzzle. It's the process of putting the pieces together to form ever
more accurate pictures that constitutes what in science we call model
building. And it’s these models—the abstract pictures of reality—that
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we use to predict future states of the world from the past and present.
The difference between these projections and what actually happens
then forms the basis of what we colloquially label surprises. But since
the notion of surprise is a bit like other informal—yet very useful—
notions like truth, beauty, charm, good and evil, in order to sketch
the outline of a science of surprise we need to formalize the informal,
so to speak. And this process of formalization leads directly to the
consideration of just what it is that characterizes a scientific approach
to the study of surprise, life, the universe or anything else.

RULES OF REALITY

In late 1989, the investment house of Drexel Burnham Lambert made
the following forecast: “There are several alternative outcomes which
are possible for the U.S. economy in 1990,” and went on to list various
possibilities ranging from a recession to an inflationary boom. It's
predictions like this that give economics and economists a bad name,
preventing the field from being taken seriously as a science even by
many of its own practitioners.

But since prediction, along with its kissing cousin explanation, is
one of the twin pillars upon which the scientific enterprise rests, it's
of more than passing concemn in our study of the surprising and the
complex to ask what it would take to be able to say with a straight
face that economics or any other field of intellectual activity is in any
way scientific, in either its methods or its results. This question
transcends mere academic interest. In today’s world a large number
of political decisions on everything from environmental pollution to
abortion hinge on so-called scientific evidence and the testimony of
scientists. So with science being held up as the standard against which
all other reality-generating mechanisms are to be judged, it's important
for every concerned citizen to have some understanding of just what
does and doesn’t constitute a sciéntific answer to a question. And it’s
of equal importance to understand the kinds of problems that the
methods of science are good—and not good—at solving.

At its heart, science is concerned with the question “Why do we
see what we do and not see something else?” The scientific answer
to this question takes the form of a set of rules, essentially a computer
program, by which we can explain what has been observed and/or
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predict what will be seen next. But rules come in many flavors, and
certainly not all of them qualify as scientific. For example, the Ten
Commandments are certainly a set of rules. Moreover, they help
explain the empirical fact that the majority of people are not reg.ulaxfly
engaged in robbery, murder or other extreme types of ant§m1al
mayhem. But hardly anyone would consider these rulgs to be in any
way scientific. Similarly, the astrologer’s rule “Saturn in the SF:cond
House predisposes one to financial misfortunes” is also consnde{ed
unscientific today, although in an earlier era it might well have been
regarded as the height of scientific respectability. This shows, inciden-
tally, that what is and is not scientific is a time-dependent phenome-
non, and that scientific rules—or “laws”—are not as absolute as a lot
of scientists would like to believe. But if the Ten Commandments and
“Saturn in the Second House” are not scientific rules for predicting
and/or explaining observed phenomena, what is?

Basically, there are two quite different sets of criteria that must both
be satisfied for a rule to have even a chance of being scientific. The
first pertains to properties of the rule itself, while the second has to
do with the way the rule is arrived at. In regard to the first type of
criterion, here is a checklist of characteristics that tend to separate the
scientific rules from the pretenders.

« Explicit—Scientific rules are explicit, in the sense that there is no
ambiguity in the statement of the rule and it requires no private
interpretation to employ the rule for prediction or explanatxon For
example, Newton’s laws of motion state an explicit relationship lnqkmg
the positions, masses and velocities of a collection of material part%c.les.
And as long as you understand what is meant by the terms position,
velocity and mass, there is no ambiguity about either what the rule
says or how it’s to be applied.

e Public—Scientific rules are open to public scrutiny. They are
presented in the open literature and can be tested by anyone who has
the time, money, equipment and desire to do so. The contrast here
with other types of rules is clear, especially those arising from many
religions, where rules accessible only to the “divinely inspired” often
play a central role in forming the tenets of a particular system of beliefs.

« Reliable—Scientific tules have stood the test of time. Before they
are accepted as legitimate laws of nature by the scientific community,
the rules must have succeeded in predicting and/or explaining a
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variety of phenomena over a substantial period of time. Of course,
this doesn’t mean the rules are infallible and cannot be overthrown
in the light of new evidence. But generally speaking, the weight of
evidence in favor of the rule must be quite overwhelming before we
dignify the rule by labeling it scientific.

* Objective—Scientific rules are objective in that they are relatively
free of investigator bias. In other words, the rule is independent of
the social position, financial status or cultural background of the
investigator. For example, the exponent in Newton’s inverse-square
law of gravitation is 2 and not 2.315 or V7 or any other number besides
2. And this remains the case for any investigator, regardless of that
investigator’s professional situation, political leanings or bank balance.
In short, the rule is observer-invariant.

I hasten to point out that this does 7ot mean that different
investigators might not formulate the rule in different terms. But all
these formulations must eventually turn out to be equivalent if the
rule is to be taken seriously as a scientific rule. For example, in the
early days of quantum mechanics there were three seemingly different
formulations of quantum phenomena, by Heisenberg, Schrédinger
and Dirac. Yet upon further investigation it turned out that all three
were essentially the same formulation and could be transformed, one
to the other, via routine mathematical operations. So what on the
surface looked like different rules ended up being the same rule
dressed up in different mathematical clothing. This is the kind of
objectivity that’s characteristic of scientific rules.

So explicitness, public availability, reliability and objectivity are four
key properties of rules that tend to separate scientific prescriptions
from those that aren’t. But earlier we said that these properties
constitute just one of two sets of criteria that a rule must satisfy before
we label it scientific. The other involves the procedure, or method,
by which we generate the rule.

If there’s even one thing that students in courses on the philosophy
of science remember years later, it's the idea of the scientific method.
This is the process by which many philosophers of science claim that
science distinguishes itself from other reality-generation schemes. And
it is this process that gives rise to the kinds of rules that serve as
candidates for the coveted accolade scientific. The principal steps in
this process are shown schematically in Figure 1.3. Here we see three
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FIGURE 1.3. THE SCIENTIFIC METHOD

stages: Observation, Hypothesis and Experiment. Tral.ditionally,.it’s
argued that the process starts with Observatioq, and' strictly ?peak1ng,
1 suppose this is indeed always the case. But in a flel.d that's alregdy
well developed—particle physics, for example—the diagram may.just
as often be entered at the Hypothesis stage as at the level of
Observation. In any case, after a few tours around thf: diagram we
can hope that the process will converge to s-omt.et.hmg. And that
something is what serves as a candidate for a scientific rule. Further-
more, if our use of the scientific method does not converge to
something, we generally give up trying to fit the observed phenomena
into the framework of science. .

Putting together the foregoing remarks and observations, we come
to the conclusion that the term science is more a verb thar} a n.oun.
Science is something that people do, not a property that disthgumhés
one field of intellectual endeavor from another. In sh.ort,.s.c1ence is
one particular way of picturing the world. And the scientific way to
create these pictures of reality is to produce a “good” set of rules (1.e..,
a mathematical model) by which we can predict and/or explain
phenomena of concem. So from this perspective it makes no sense
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to claim that, say, physics is scientific while, for example, sociology
is not. Either may or may not be scientific. It all depends on whether
the fundamental questions in the field are answered by producing a
set of scientific rules. So as we wend our way through the thickets of
surprising behaviors sprinkled throughout this volume, the reader
should keep this point uppermost in mind when considering whether
we have yet succeeded in creating a scéence of surprise.

PATTERNS, PUZZLES AND PARADOXES

In 1989, British mathematical physicist Roger Penrose published The
Emperor’s New Mind, a book in which he advances a variety of tantalizing
speculations linking quantum theory, the brain and the mind. Penrose
concludes that the workings of the human mind cannot be duplicated
by a machine—even in principle. This is a comforting conclusion for
many, a fact that no doubt contributed mightily to the appearance of
such a technical book on the best-seller list for several months. But as
thought-provoking as these ideas are, my own guess is that history
will be far kinder to Penrose for quite another intellectual achieve-
ment, one far removed from rarefied science-cum-philosophical
speculations about minds, men and machines. This down-to-earth
accomplishment involves the seemingly mundane problem of cover-
ing a flat surface like a floor with tiles. It's but a small step from the
consideration of such tiling patterns to the problem of compact
descriptions considered above. Let me illustrate the situation with an
example from crystallography.

Common table salt is formed from atoms of sodium and chlorine
arranged in the simple crystalline array shown in Figure 1.4. If we
shine a light (or, more properly, a burst of X rays) through this array,
the atoms will cast a shadow, or diffraction pattern, like that shown
in the left half of Figure 1.5.

If you tried to explain the salt pattern to a colleague over the
telephone, you'd have no trouble giving a very short, yet complete,
description of it. Maybe you’d say something like “An equally spaced
rectangular grid of alternating chlorine and sodium atoms.” By way
of contrast, the right half of Figure 1.5 shows a the diffraction pattern
of what’s called a quasicrystal. While there certainly appears to be
some sort of structure here, it's a pattern that seems difficult to
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FIGURE 1.4. THE CRYSTALLINE STRUCTURE OF SALT

characterize in any simple, compact way. In fact, these quaysicrystal
diffraction patterns arise directly from the projections of what’s called
a Penrose tiling of the plane. Such a tiling, in which a planar su”rface
like a bathroom floor is completely filled by a collection of “darts” and
“kites,” is shown in Figure 1.6. '

The point of this example is again to show that wh.en it comes to
distinguishing a simple pattern from one that’s cqullcated, a gopd
criterion is to consider the shortest possible description we can give
for each of them. This agrees with the intuitive, commonsense view
that the shorter the description, the simpler the pattern. As an as'l'de,
it's worth mentioning that the relative complexity of the Penrose tiling
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FIGURE 1.5. DIFFRACTION PATTERN FOR (A) SALT AND (B) A QUASICRYSTAL
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Ficure 1.6.
A PENROSE TILNG OF THE PLANE

kite

leads to many fascinating applications in geometry as well as in the
physics of quasicrystals. Moreover, tile manufacturing firms have
discovered that the entrancing beauty of the pattern holds consider-
able commercial appeal, as well.

By way of playing with this notion of using the length of the shortest
description as a measure of complexity, the reader might enjoy trying
to pin down the complexity of the painting Checkerboard, Bright
Colors 1919 by the Dutch artist Piet Mondrian, shown in Figure 1.7.
On the one hand, we have the regularity of Mondrian’s checkerboard
grid, which argues for low complexity (easy to describe). On the other

hand, the colors appear in a seemingly haphazard fashion (hard to
describe).

Not only are patterns sometimes difficult to describe, as with the
Penrose tiling above, they can also be rather difficult to recognize.
This is the essence of those multicolored dot patterns used by eye
doctors and driver’s license bureaus to test for color blindness. A
specific pattern (some number, usually) is hidden within a snowstorm
of various colored dots so that it will be invisible if you happen to be
blind to certain colors.

A universal feature of knowledge is that one must get outside of a
System in order to really understand it. For example, it’s just not
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FIGURE 1.7. MONDRIAN'S CHECKERBOARD, BRIGHT COLORS 1919

possible to understand the essential nature of a submarine without
watching it move beneath the surface of the ocean. Clearly, you can’t
do this from inside the submarine itself. And as we'll see 'tha later
chapter, Godel's Theorem in mathematical logic tells us that the truth
or falsity of statements in a branch of mathematics cannot be deter-
mined without going beyond that branch of mathematics to another.
So one way of dispelling confusion in pattern recognition tasks is to
“jump out of the system,” so to speak, and look at the problem from
a different hierarchical point of view. Let me illustrate this kind of
hierarchical leap with an episode from my own mercifully brief career
as a graduate student.

Before enrolling for graduate studies at the University of Southern
California in the late 1960s, I had heard rumors to the effect that USC
students and fans take their sports seriously, especially football. While
applying the finishing.touches to a doctorate in mathematics in the
fall of 1969, I was inadvertently. caught up in this football mania one
sunny Saturday afternoon at the Los Angeles Coliseum. On arriving at
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the Coliseum and taking my assigned seat in the USC student rooting
section, I was surprised to find a large manila envelope awaiting me.
When I opened the envelope, out spilled several large cards in
assorted colors, together with a small instruction sheet congratulating
me on being elected to a one-game membership in the famed USC
flashcard section. The instructions went on to say that my job was to
listen carefully to the cheerleader during the half-time show, and hold
up my card numbered X when the cheerleader called out stunt
number Y. Under the wildly optimistic assumption that everyone in
the card section would follow their assigned task, the cards held up
would then be visible to the TV cameras across the way as a particular
pattern—probably something showing Tommy Trojan soundly thrash-
ing a Cardinal or a Bruin or, even better, a Fighting Irishman. But the
one group of people in the Coliseum that day who would never know
which of these patterns was actually displayed was my group—the
“flashers.”

That's the point. In order to see the pattern formed by the cards,
you have to jump outside the system. Down at the level of the system
itself (the level of the individual flashers like me), there was no
recognizable pattern but only a seemingly senseless holding up of one
colored card or another. The reader will recognize the similarity of
this situation to that of a Times Square message board, in which
individual lights flash on and off to form a pattern (i.e., a message)
that can only be seen and understood at a level beyond that of the
lights themselves. Here we have a situation in which common sense
living at one level might well argue that there’s no pattern of any sort
to be seen. Yet by moving outside the system to a different view of
the situation, pattern and structure emerge as if by magic.

But common sense can be fooled in many other ways, too. One of
the most entertaining is by paradox, an enemy of clear thinking that
comes in a bewildering variety of forms—artistic, logical, linguistic
and otherwise. Let’s look at a few examples of the ways paradox can
generate surprises by leading common sense astray.

* The Alabama Paradox—Following the census of 1880, the seats
in the U.S. House of Representatives had to be reapportioned to reflect
the new population distribution. The apportionment scheme in use at
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the time had the totally unexpected property that when it was applie.
to a House with 299 seats, the state of Alabama was entitled to 8 seats,
but when the size of the House was set at 300 seats, Alabama’s
representation was actually reduced to 7 seats.

Needless to say, the loss of a Congressional representative caused
considerable furor at the time (especially in Alabama), along with the
call for an explanation of such a counterintuitive outcome. After all,
if the total number of representatives is increased, how could any
state’s fair share of seats go down? This is the Alabama paradox. It
was not until more than thirty years later that the reapportionment
scheme that’s still used today was introduced, a scheme that explicitly
precludes a state’s losing seats if the total number of seats in the House
is increased.

It's not very important for our present purposes why the old
apportionment procedure led to such a counterintuitive result. We’'ll
see some of the reasons in a later chapter. Here it's only necessary to
note that what looks like a perfectly sensible, fairminded set of rules
for dividing up a resource can lead to a result that flies straight in the
face of intuition and common sense. But reason and logic are not the
only things that can be fooled by paradox. Here’s another example.
This time it's our eye that’s fooled instead of our mind.

*» The Impossible Staircase—In a 1958 issue of the British Journal
of Psychology, the geneticist L. S. Penrose and his son Roger, creator
of the Penrose tiling discussed earlier, published the visual illusion
now known as the impossible staircase. It's shown below in Figure
1.8(a). What’s paradoxical about this staircase, of course, is that as you
make a complete tour of the stairs and come back to where you started,
with each step you appear to be moving to a higher level, yet you
come back to exactly the same level at which you began. This illusion
of continually rising to higher and higher levels was later put to good
use by the Dutch artist M. C. Escher in many of his most famous
engravings. A good illustration is his well-known work Ascending and
Descending, shown in Figure 1.9.

The secret of the impossible staircase can be unraveled by slicing
it as shown in Figure 1.8(b). Here we see that if you follow level 1
from its highest apparent position at the upper right, it reappears at
the base of the staircase structure. Similarly, level 2 also reappears at
the bottom of the structure, just above level 1.

FIGURE 1.8. THE IMPOSSIBLE STAIRCASE

FIGURE 1.9. M. C. ESCHER, ASCENDING AND DESCENDING
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Now to cap off this brief tour of the paradoxical, let’s turn away
from logic, geometry and visual illusion to focus attention on a simple
mechanical system.

» A Mechanical Network—Consider the network of weights,
springs and strings shown in Figure 1.10(a). Here the weight w = Y,
while the two strings holding the system together each have length
L = 1. The springs are assumed to have unstretched length zero and
elasticity constant k = 1. Finally, the string that links the two springs
has length ¥%. The question is What happens to the weight when the
linking string is cut? Intuition and common sense cry out for the answer
that the weight drops. But by now we should know that you just can’t
always trust everyday common sense! The right half of the figure
shows that in fact the weight actually rises if we sever the string. Here’s
why.

When we cut the string linking the two springs, the situation
becomes that shown in Figure 1.10(b). The safety string attached to
the support at the top and to the lower spring now bears half the
weight. The other half is borne by the upper spring and the saf?ty
string attached to it. Thus, the extension of each spring is 75 x % = Y4.

FIGURE 1.10. WEGHTS, SPRINGS AND STRINGS
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As a result, the distance from the support to the weight is now
1 + Y4 = 1% —less than its previous length of 13%. Consequently, at
equilibrium the weight must be higher than its original position. But
not even counterintuitive networks can violate the laws of physics,
and the potential energy of the system is now less because the springs
have contracted from their previously extended lengths. This reduc-
tion in potential energy of the springs compensates for the energy
gained by raising the weight.

In case you're thinking that this kind of network is merely a
theoretical curiosity devoid of any practical interest, the situation
depicted in Figure 1.11 will quickly sober you up. It shows how just
such a paradoxical rearrangement of nuts and bolts resulted in a
considerable loss of life a few years ago in a Kansas City hotel. As
shown, a “routine” engineering change from (a) to (b) during con-
struction of the hotel tripled the shear load on nut N, causing three
hotel balconies to fall when the nut split open. The paradox here is
that configuration (b) distributes the load over seven nuts instead of
three as in (a). Nevertheless, the series-to-parallel transformation
underlying these kinds of network paradoxes ends up placing a
greater load on nut N} when it’s in configuration (b) than in (a).

This simple mechanical paradox has analogs in electrical circuit
theory, traffic flow and hydraulics as well, illustrating the possibility
of counterintuitive behavior in many types of networks when the load
imposed on an arc in the network affects that arc’s behavior (in this
case, the stretching of the spring). These sorts of paradoxes themselves
constitute surprises arising out of a mismatch between what common

FiGurs 1.11.
STRUCTURAL SUPPORT INl THE KANSAS
CITY HOTEL
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sense and intuition (i.e., our models) tell us and the way the world
just happens to be constructed.

Now let’s turn from simple geometrical patterns and paradoxes to
a particularly widespread form of cognitive contradiction—the phe-
nomenon of irrationality.

Common Sense and Irrationality

The refinement in economic thought over the past two hundred years
would almost certainly make today’s theories of men and money
unrecognizable to Adam Smith. Yet one point upon which the Adam
Smith of 19th-century Scotland and the Adam Smith of the PBS
television show “Money Line” would certainly agree is that human
economic behavior is ultimately rational. Economists have always
believed that individuals make choices so as to maximize their utslity,
meaning that we try to derive as much satisfaction as possible from
the sum total of our actions. So we watch football on TV until we
think our hours and minutes can be more happily spent listening to
Mozart or reading War and Peace. And we spend our meager
paychecks on beans and bananas unless cream cheese and caviar
seem to hold greater allure. Utility maximization, then, is a form of

rational self-interest. But despite its elegance as a theory, utility
maximization just doesn’t seem to match up to the way the real world

actually works. Let’s look at an example given by Richard Herrnstein
and James Mazur showing how the commonsense, utility-maximizing
solution to a problem can actually be profoundly irrational.

Suppose you are given the choice of receiving $100 today or $120
one week from now. To make sure you get the money, you are assured
that the funds will be placed in escrow for safekeeping. Given these
options, the vast majority of people opt for taking the smaller
immediate reward rather than waiting a week for the extra $20.

The usual explanation for this take-the-money-and-run type of
behavior is that those who choose to take the money today are
discounting the future, in effect saying that the future is always
uncertain, and that money in hand today can begin earning interest
tomorrow rather than a week from now. By choosing $100 today over
$120 next week, such people are implicitly applying a discount factor
of 20 percent a week.

To see the irrationality—or at least inconsistency—in this kind of
decision-making, consider the following option: you may either
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receive $100 today or wait one year and get $1,300,000. Just about
everyone I know answers that they would be perfectly willing to wait
a year for that million bucks, as opposed to taking a quick hundred
today. Yet these are the same 20-percent discounters who said that
$100 in the hand is preferable to $120 in the bush. If they were
consistent (i.e., rational) decision-makers, they would still take the
immediate payoff of $100, since the larger amount discounted at 20
percent a week for a year amounts to only $99.20. So utility maximi-
zation suggests indifference between the two choices, at best. But real
people are far from indifferent to these two alternatives, expressing a
pronounced preference for the “big score.”

When confronted with this sort of experimental evidence showing
that real decision-makers act irrationally in that they do not maximize
their utility, economists and psychologists often explain the apparent
breakdown of rationality by appealing to the myriad factors involved
in the decision-making situation, things like incomplete information,
too short a decision-making time and limited data-processing capa-
bilities. But as we’ll see in a later chapter, these factors are not the
main culprits at all. Rather, the root cause of the difficulty lies in the
relationship between the average utility over time and instantaneous,
or marginal, utility. So to resolve the irrationality dilemma, we have
to appeal to a theory of approximately rational behavior, or what
psychologists term melioration.

So far we have concentrated on the kind of complexity seen in static
structures—artistic patterns, logical puzzles, one-time-only decisions
and the like. “But,” as Galileo once said, “it moves.” And so we’re led
inexorably to consider dynamical processes, where the most difficult-
to-understand behaviors can unfold from what seem like the most
humble of origins. Our next section takes a quick look at some of the

strange things that can happen in the wonderland of dynamical
processes.

IS ALL IN THE MOTION

Treasure Hunt is a popular childhood game, in which each player
receives a list of clues that point to the contest prize. One common
variant involves having the original list of clues lead to a second list,
which in turn leads to a third list and so on, the final list of clues then
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pointing to the actual prize itself. The path followed by any one player
in this version of Treasure Hunt serves admirably as an example of a
dynamical system, the crucial ingredient needed to understand the
appearance and disappearance of complicated patterns and behaviors
over the course of time. So let’s follow the fortunes of a single player
in this kind of Treasure Hunt, calling our man John.

Assume for the sake of definiteness that the playing arena for the
hunt consists of the entire territory of Central Park in New York City.
The game then begins with John receiving the initial set of clues while
standing at, say, the Plaza Hotel entrance to the park, which we might
coniveniently term “ground zero.” Decoding the clues on this initial
list, John moves from the Plaza entrance to the foot of a large oak tree
next to the Zoo, where upon moving a few leaves and branches aside,
he finds the second set of clues. Musing a bit on these new clues, John
soon teases out their meaning and takes a hike to the opposite side
of the park over by the Lake. Digging a few inches into the sand by
the shore of the Lake, John uncovers the third set of clues. The message
coded into these clues tells John to go to the delivery entrance behind
the Tavern On The Green, where the “treasure,” a coupon worth
dinner for two at any restaurant in the city, lies hidden beneath the
third garbage can on the left. Figure 1.12 gives a pictorial account of
John'’s tour in moving from his starting point at the Plaza to the ultimate
promise of a fine meal. For later reference, the reader should note that
Figure 1.12 also shows the path taken by Jim, one of John’s competi-
tors in the game, who started at the Fifth Avenue entrance to the park
rather than at the Plaza Hotel. This process of following the clues from
the Plaza entrance to the Tavern On The Green is a concrete example
of what scientists call a dynamical system.

A dynamical system is composed of two primary ingredients: (1) a
playing field, or space, on which the motion of the system takes place,
and (2) a rule telling us where to go next from wherever we are now.
Technically, the playing space is termed a manifold, while the rule of
motion is called a vector field. So in the case of John and the Treasure
Hunt, the manifold is Central Park, a rectangular region bounded on
the north by 110th Street, on the south by 59th Street, on the west by
Central Park West and on the east by Fifth Avenue. The rule governing
John’s motion over this manifold is the set of instructions coded into
the lists of clues John found at the various locations in the park. This
set of three lists constitutes the vector field of this dynamical system.
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Finally, the path John traced out as he moved from one location to
another is called the trajectory of the system, while the starting location
at the Plaza entrance is termed the system’s initial state. It’s clear from
this setup, I think, that once the manifold, the initial state and the
vector field (the set of rules) are given, John’s trajectory through the
park is then completely fixed—assuming he decodes the clues cor-
rectly and that each list of clues defines a unique location in the park.

What's of great interest to both dynamical system theorists and to
John and Jim is the end point of the trajectory, what's called the
system’s attractor. Perhaps the best way to envision the attractor is to
think of it as a kind of mathematical black hole. Once the system
behavior moves onto the attractor, it stays there forever. There are at
least two reasons why the attractor is so important. First, in many
physical systems the short-term, or transient, motion leading from the
initial state to the attractor is very rapid. As a result, what we see when
we look at the behavior of such systems is what the system is doing
Yvhen it's already on (or very near) the attractor. But even if the system
1s not yet on the attractor, its motion is still governed by the nature of
the attractor in much the same way that the path of a leaf or a cork
floating in the sea is dictated by the size and nature of nearby
whirlpools and waves. In short, the overall behavior of a dynamical
System is for the most part fixed by the number and character of its
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attractors. This leads naturally to the question What kinds of attractors
can a dynamical system display?

The Three Altractors

Basically, there are three main types of attractors. The simplest is the
fixed point, exemplified by the single garbage can behind the Tavern
On The Green at which John'’s trajectory through Central Park ended
up. In that case, the clues led to one definite point in the park, and
when John got there his motion ceased. At such a point, the rule of
the vector field says, in effect, “Stop right here. The game is over.” Of
course a system may have many fixed points of this sort. The particular
one you end up at is determined by where you start. This is analogous
to a Treasure Hunt in which there are several prizes located at different
places throughout the park. In that case, different players might start
at different locations, thereby tracing out different trajectories by
following the clues from the different starting points. Some of these
paths would lead to the same garbage can behind the Tavern On The
Green that “captured” John. We would say that these players and John
were all in the domain of attraction of the garbage-can fixed point.
Other players, though, might end up at other locations scattered

throughout the park, each of these places also being fixed points of

the dynamical system. These points also each have their own domain
of attraction (i.e., sets of players, that are “attracted” to them).

The next simplest kind of attractor comes about when the rules of
the system cause a given trajectory to repeat itself in a cyclic fashion.
In this case, after an initial transient phase the system’s trajectory
passes through the same sequence of points forever. This kind of
periodic orbit is technically termed a limit cycle. In Figure 1.12 we see
that after a transient stage consisting of a stop at the Hans Christian
Andersen statue, Jim's trajectory is “sucked” onto the limit cycle
attractor consisting of the Loeb boathouse, the Metropolitan Museum
of Art and the Alice in Wonderland statue—a cyclic orbit of period
three, since there are three locations constituting the orbit. Limit cycles
are often encountered in dynamical processes used to describe things
like clocks, economic fluctuations and the human heartbeat. Fixed
points and limit cycles are the two classical types of attractors and
were almost certainly known to Newton. Their geometric structure is
shown diagrammatically in Figure 1.13. But there is a third, decidedly
nonclassical, type.
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FIGURE 1.13. A FIXED POINT AND A LIMIT CYCLE

The final type of attractor is the most complicated and, surprisingly,
the most common. It is what's nowadays called a strange attractor. In
rough terms, the strange attractor is a lot of periodic orbits and
aperiodic paths all rolled up into one big tangled mess. A good visual
image of such a monstrosity is a ball of yarn or, even better, a bowlful
of spaghetti (with sauce). Each strand of spaghetti in the bowl is one
part of the strange attractor, the spaghetti sauce ensuring that no two
strands ever quite make direct contact. Yet on each strand there is
some point that is as close as we like to any other strand, some strands
even closing back on themselves to become periodic orbits. But to be
on a strange attractor, periodic orbits must, in general, be of a special
type: unstable. This means that the path describing the orbit acts like
a repellor rather than an attractor. If we move off such an orbit by
even a little bit, we are then pushed even further away to another part
of the attractor rather than being attracted back to the original orbit,
as would be the case if the orbit were stable. A strange attractor is
shown schematically in Figure 1.14. Since these ideas about dynamical
systems are so crucial to our subsequent discussion, let’s try to cement
them in place using a familiar household example.

The magic that makes a grandfather clock work as a timepiece is
the regular, cyclical motion of the bob at the end of the clock’s
pendulum as it swings back and forth between its two extreme
positions. Regarding such a clock as a dynamical system, the set of
States is the collection of all the positions that the bob can possibly
be in, together with the speed and direction of motion of the bob at
those locations. Consequently, we can specify the state of the clock
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FIGURE 1.14. A STRANGE ATTRACTOR

at any particular moment simply by giving two numbers: the first
represents the position of the bob away from its rest point, the second
its velocity, say positive for motion to the right and negative if the bob
is moving to the left. For the sake of discussion, let’s agree to call the
state of the clock when the bob is at rest the zero state.

Assume at first that there’s no friction in the clock’s mechanism (i.e.,
the pendulum is “undamped”). So when we pull the pendulum bob
away from the zero state and let it go, the bob swings to and fro,
tracing out the same arc forever. The amplitude of this arc is
determined solely by the distance that the bob is pulled away from
the rest state. This phenomenon is shown geometrically in Figure 1.15.
The picture makes it clear that the attractor for this undamped case is
simply a circle in the space of possible states, which are shown in the
right half of the figure. In short, the motion is periodic and the attractor
is a limit cycle in which there is no transient motion, since the system
is already on the attractor when the motion begins.

Now let’s forget about idealized frictionless clocks and sprinkle a
little dust and sand onto the bearings of our clock’s mechanism. Now
the clock will run down, with the bob eventually returning to the rest
state. Thus, the attractor for this “damped” system is the single fixed point
consisting of zero position and velocity, or the zero state. Figure 1.16
shows the way the clock spirals down to this fixed point at the origin
in the space of clock states. Now consider the extreme case in which
we pull the pendulum bob all the way to the top, so that it stands
precariously balanced in a position exactly opposite to that of the zero
state. What's the situation with the attractor now? Herein lies a crucial
tale in the storybook of dynamical systems.

For normal grandfather clocks whose bobs are not displaced to the

FIGURE 1.15. BEHAVIOR OF A GRANDFATHER CLOCK WITH NO FRICTION
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FIGURE 1.16. ATTRACTOR FOR A REAL GRANDFATHER CLOCK

top, the typical behavior is for the bob to return to the zero state as
long as it’s not pulled too far away from the zero state. We then call
the zero state a stable fixed point for the system since all sufficiently
small perturbations eventually lead back to it. Consequently, we might

think of such a fixed point as being a kind of magnet that attracts all- ..

nearby states. On the other hand, the state at the top—in which the
position is 180 degrees away from the zero state and the speed is
zero—is also a fixed point since the pendulum bob will not move
away from this state on its own. But any disturbance, however small,
that pushes the bob away from this state will cause the pendulum to
be repelled from this unstable fixed point and move toward the stable
fixed point at the bottom. We come to the conclusion that attractors
can be either stable or unstable. This observation will be of the utmost
importance throughout the rest of the book.

When it comes to what common sense would call “complicated
behavior,” it’s hard to argue that a single swinging pendulum is any
way complex. The motion of the bob is either boringly repetitive (in
the no-friction case) or winds down to a simple rest point at which
nothing is happening (if friction is introduced). These are both pretty
simple kinds of behavior from what, in essence, is a very simple
system. So in our quest for the essence of the complex, it's of greater
interest to look to the strangeness of our third type of attractor.

* * *
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In the mid 1970s, Mitchell Feigenbaum was a physicist at Los Alamos
in search of a problem. While waiting for inspiration from his muse,
Feigenbaum started playing around with a hand calculator, looking at
the properties of a series of numbers generated by a very simple
scheme involving one addition and two multiplications. What Feigen-
baum discovered was one of the sparks touching off the explosion of
interest in what we now call chaos, fractals and computer-oriented
experimental mathematics. To make a long story short, Feigenbaum’s
seemingly aimless punching of buttons on his calculator turned up
the heretofore unappreciated fact that by following a perfectly deter-
ministic set of simple rules, you can end up with a completely
unpredictable, essentially random result. And, in fact, the rules that
Feigenbaum used to generate his magic numbers were the very same
rules that programmers often employed in the early days of computing
to generate a list of numbers giving every appearance of being
completely random. To see the import of Feigenbaum’s momentous
discovery, let’s consider an equivalent version of these rules, charac-
terizing what I like to call the Circle-10 system.

Suppose we are given a circle C whose circumference is divided
into ten segments of equal length, labeled 0, 1, . . . 9. To make things
simple, let’s also suppose that the circumference of the circle is 1, so
that each section has length lio With this setup, any number
between 0 and 1 can be represented as a point on the circle in the
following way: sector 0 corresponds to all numbers between 0 and
0.099999. . ., while sector 1 runs from 0.1 to 0.19999 . . . and so on to

" sector 9, which contains all the numbers from 0.9 to 0.9999. . . . So, for

instance, the number r = 0.379762341 is a point lying in sector 3, almost
80 percent of the way to sector 4.

To create the Circle-10 dynamical system, let the points of C be
the manifold of states. Consequently, a state of the system is specified
by a single number between 0 and 1. Now define the rule of state
transition to be “If you're at the point x, go to the point 10x.” But
remember that one time around the circle takes you back to where
you started, as do two, three or any other whole number of circuits.
So, since the circle has a total length 1, when we multiply any number
by 10 to get the next point, it’s necessary to chop off the integer that
appears on the left side of the decimal point. This is the mathematical
way of ignoring complete tours around the circle. In other words, to
find out where to move next on the circle from a particular point x,
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we keep only the fractional part of the number 10x. Figure 1.17 shows
the results of the first step of this dynamical process, starting at the
point 7 given eatrlier, while Table 1.1 gives the first nine steps on tbe
trajectory of the Circle-10 dynamical system from this same initial
point 7. From this discussion, we see that the action of the Circle-10
rule is the ultimate in simplicity: wherever you are now, just multiply
by 10 and delete the digit to the left of the decimal point to get the
address of where you should go next. It’s hard to think of a rule easier
to describe than this.

10r

FIGURE 1.17. THE CIRCLE-10 SYSTEM

TABLE 1.1.

THE FIRST NINE STEPS ON THE

CIRCLE-10 TRAJECTORY

Time Number Point on Circle Sector

0 0.379762341 =0.379762341 3
1 3.79762341 =0.79762341 7
2 7.9762341 =0.9762341 9
3 9.762341 =0.762341 7
4 7.62341 =0.62341 é
5 6.2341 =0.2341 2
6 2.341 =0.341 3
7 3.41 =0.4) 4
8 4.1 =0.1 1
9 1 =0 0
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Now look at the sequence of sectors that the system visits. From
Table 1.1 we see that the itinerary of the starting point  is sectors
3,7,9,7,6,2,3,4,1,0,0,0,0,0, . . . . If these numbers look familiar, they
ought to—they are just the decimal digits of the starting point ! And

- this is not just a coincidence. For any starting point, the list of sectors

visited exactly matches the decimal digits of the starting point for the
simple reason that the rule “Multiply by 10 and chop off the digit to
the left of the decimal point” corresponds to nothing more than shifting
the decimal point one position to the right and neglecting complete
circuits. This is about the most straightforward, easy-to-calculate,
deterministic dynamical system imaginable.

But simple to calculate and describe doesn’t necessarily mean
simple in behavior, and the Circle-10 system captures almost all of the
interesting behavioral features associated with chaotic systems and
strange attractors. Let’s take a look at some of the most important of
those features.

* Divergence—A number is called a palindrome if it reads the same
backward and forward. Thus, the palindromes are 1, 2,3,...9 11,
22,33, ...99, 101, 111, 121, . . . 191, 202 and so on ad infinitum.
Suppose we form a single number in the unit interval by writing down
all palindromes in order and then putting a decimal point in front of
it. Let’s call this number P for palindrome. So we have

P =0.123456789112233445566778899101111121131 . . . .

Now suppose we choose a starting point p for the Circle-10 system
whose decimal digits agree with those of the palindrome number P
in the first billion digits, but thereafter continue with 66666 . . . forever.
Thus, the itinerary of the system starting from P agrees with the
itinerary from p for the first billion steps. But thereafter the trajectory
from p stays put in sector 6 forever, while that from P goes on about

its business, whatever that may be, but which definitely does not

involve grinding to a halt in sector 6.

This example shows that two starting points, P and p, closer
together than we'll ever be able to measure, wind up following
completely different paths. In the dynamical system theorist’s diction-

ary, systems having this kind of divergent behavior are said to be
Sensitive to initial conditions.
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One way of thinking about this kind of sensitivity is in terms of
information. Initially, we have two starting points that are observa-
tionally indistinguishable. As time unfolds, the trajectories emanating
from these two points diverge to the extent that we are able to
recognize two distinct trajectories. This means that there has been a
creation of information, in that by knowing there are two trajectories
we also then know that since every starting point gives rise to a unique
trajectory, there must have been two different starting points—even
though we could not distinguish them at the outset. In short, the
system has generated information during the course of its operation.
This information generation can be measured by something called the
K-entropy, about which the reader can find more details in the To Dig
Deeper section for Chapter Three.

* Randomness—Earlier we noted that almost every real number is
random in the sense that there is no way to describe its digits that’s
shorter than just writing them down, one after the other. But this means
that for almost every starting point of the Circle-10 system, a listing of
the sectors visited will be indistinguishable from the output of a
random-number generator. This experiment shows that randomness
need not necessarily come from an indescribable or uncertain rule. A
deterministic rule applied to a known starting point can generate an
outcome that’s every bit as random as the spin of a roulette wheel or
the toss of a coin.

* Instability of itineraries—Almost all itineraries are random, but
some are not. Which ones? Obviously these are the itineraries whose
starting points consist of digits that repeat themselves after a finite
number of steps. Such points lead to trajectories that repeat themselves
over and over again. It's 2 well-known mathematical fact that the
numbers having this kind of periodic pattemn in their digits are
precisely the rational numbers: numbers like 13, 1/2, 7/23 and
192397/209587, each of which is the ratio of two whole numbers.

In the interval between 0 and 1 there are an infinite number of
rational numbers, as well as a much larger infinity of irrational numbers
like 7, V17 and the palindrome number P. It turns out that between
any two irrational numbers there is a rational one, although they do
not alternate (almost all the numbers are irrational). Consequently, the
starting points that lead to periodic itineraries are totally mixed up
with the aperiodic points—numbers whose decimal expansion con-
tinues forever without repetition—that do not lead to such repetitive
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itineraries. This fact also shows that the periodic points are unstable,
since if we perturb them just a little bit to a nearby irrational, the
system trajectory takes off on a totally different course, one that no
longer repeats itself. As it turns out, there can be at most one stable
point, with other starting points being unstable. So regardless of
whether you start the Circle-10 sequence at a periodic or an aperiodic
point, the itinerary is almost surely unstable in the sense that a small
perturbation away from any point on the itinerary sends the system
off onto a completely different trajectory. The bowl-of-spaghetti
picture of a strange attractor is a good way to visualize how this can
happen.

At this juncture in our narrative it's reasonable to ask, Are things
like the Circle-10 system just mathematical curiosities, or are they
something we can expect to encounter in the real world? A clear
answer to this eminently sensible query has emerged over the past
decade or so: systems with strange attractors are the rule, not the
exception. So if you're dealing with mathematical representations of
the real world, then you’re dealing with strange attractors or, in the
vernacular, chaos. We will see ample evidence for this claim in Chapter
Three. By way of introduction to these ideas, let’s look at a different
dynamical process, one that goes under the rubric of the logistic law
of growth.

Over the past twenty years or so, Cesaré Marchetti of the International
Institute for Applied Systems Analysis in Laxenburg, Austria, has been
poring over statistical records describing the growth and decline of
hundreds of psychological, social, technological and political phe-
nomena. These efforts have turned up the truly remarkable fact that
the dynamics of things like Mozart’s musical works, construction of
Gothic cathedrals in Europe and the volume of world airline traffic all
seem to follow the same simple pattern, which biologists call the
logistic, or S-shaped, curve.

The basic form of the logistic curve is shown in the left half of
Figure 1.18, which displays the growth of a bacterial colony over time.
The right half of the figure shows the same S-shaped curve plotted in

" coordinates using the quantity F/(1 — F), where F represents the

fraction of the final system “size.” So, for example, when the ratio
F/(1 - F) equals 1, the system has reached 50 percent of its final size,
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FIGURE 1.18. LOGISTIC GROWTH OF A BACTERIAL COLONY

and when this quantity equals 10%, or 100, the system is at essentially
100 percent of its final size. This kind of plot is convenient, since any
process whose behavior obeys the S-shaped logistic rule will appear
as a straight line when plotted using the ratio F/Q4-PF.

Of course, logistic growth is just what we'd expect from a colony
of bacteria with a fixed amount of nutrient, given the fact that such a
colony can grow only as long as nutrient is available. We would expect
a period of rapid growth at the beginning when there’s more than
enough nutrient to go around. When the nutrient starts running short,
unrestricted growth is curtailed and the growth rate becomes more or
less proportional to the current number of bacteria due to competition
for the limited amount of nutrient. Finally, the growth tails off as the
nutrient is exhausted.

What's interesting about Marchetti’s work is the fact that this very
same pattern seems to appear in areas where there is no obvious
quantity available to play the role of the nutrient, or scarce resource.
Figures 1.19 and 1.20 illustrate this point for the growth of mainframe
computers in Japan and the cumulative production of Mozart’s thirty-
five major musical works. This latter illustration is particularly intrigu-
ing since it suggests that each of us has some kind of internal
“program” regulating our creative output until death. Moreover, as the
saturation point is approached, people seem to die when they have
exhausted 90 to 95 percent of their potential, as measured by the
limiting values of their productive curve.
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with several hundred examples of this type to draw upon,
Marchetti’s work strongly suggests that there is some kind of universal
principle governing a large number of human and natural phenomena,
and that the form of this principle is the simple logistic rule outlined
above. In Marchetti’s setting, the logistic rule enables us to find
structure in what initially appears to be a more or less random scatter
of data. The results of Chapter Three show that this phenomenon is
completely typical: the logistic rule, which is almost as simple in form
and just as deterministic as the Circle-10 rule, can, under appropriate
conditions, give rise to behavior that’s every bit as random as the flip
of a coin. So here Marchetti starts with the behavior and deduces the
logistic rule; in Chapter Three we'll consider the situation the other
way around, starting with the logistic rule and looking at the seemingly
random behavior.

With these ideas of universal self-organization in mind, let’s look
at still another way in which complicated, counterintuitive behavior
can emerge—through nonlinear interactions. Just as with static situ-
ations of the paradoxical sort considered earlier, dynamical systems
can also display surprising properties when we couple elementary
subprocesses. together to form a larger system. Probably the quintes-
sential example of how hard-to-understand behavior arises in this
fashion is the famous Three-Body Problem of celestial mechanics.

The classical theory of dynamical systems had its origins in the
determination of planetary orbits. And one of the most pressing
questions confronting celestial mechanicians was whether or not the
solar system was stable. Basically, the question asks, If the orbit of
one of the planets is perturbed a bit, will this disturbance eventually
result in a planetary collision? Or possibly cause one or more of the
planets to fly off into interstellar space? The mathematical formaliza-
tion of this question has come to be known as the Three-Body
Problem, a puzzle whose complete answer is not known to this day.
But cne of the things that is known about the Three-Body Problem is
that the answer cannot be obtained by breaking up the question into
a sequence of simpler questions.

It's known that the behavior of two planetary bodies orbiting each
other can be written down completely in closed form. Nevertheless,
it tumns out to be impossible to combine the solutions of three
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two-body problems to determine whether a three-body system is
stable. Thus, the essence of the Three-Body Problem resides somehow
in the linkages between all three bodies. And any approach to the
problem that severs even one of these linkages destroys the very
nature of the problem. So here is a case in which complicated behavior
arises as a result of the interactions between relatively simple subsys-
tems. And this is not a phenomenon confined to the nether world of
planets and stars either, as the following example shows.
Conventional wisdom in the world of economics (Adam Smith’s
world, that is) says that in a system of goods and demand for those
goods, prices will always tend toward a level at which supply equals
demand. In short, the negative feedback from the supply/demand
relationship to prices leads to a stable equilibrium point. Recently
maverick economists like Brian Arthur of the Santa Fe Institute have’
argued that this is not at all the way the real economy works. Rather
they claim that what we see is positive feedback in which tile price’
equilibria are unstable. A familiar example will illustrate the point
%en video cassette recorders (VCRs) started becoming a hou'se-
hold item a decade or so ago, the market began with two competing
forrr?ats—VHS and Beta—selling at about the same price. By increas-
ing its market share, each of these formats could obtain increasing
returns since, for example, large numbers of VHS recorders would
encourage video stores to stock more prerecorded tapes in VHS
fozma.t. This in turn would enhance the value of owning a VHS
mz'ichme, leading more people to buy machines of that format. So by
this met':l.lanism a small gain in market share could greatly amplify the
competitive position of VHS recorders, thus helping /t’é;t format to

further increase its share of the market. This is the’ characterizing

feature of positive feedback-—small changes are amplified instead of

- dying out.

The feature of the VCR market that led to the situation described

above is that it was initially unstable. Both VHS and Beta systems were

l:troduced at about the same time and began with approximately
v:;ual markeF sbares. The fluctuations of those shares in the early going
ere due principally to things like “luck” and corporate maneuvering

' In a positive-feedback environment, these seemingly chance factors

eventually tilted the market toward the VHS format until it acquired
ie:lough of an advantage to take over essentially the entire market. But
would have been impossible to predict at the outset which of the
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two systems would ultimately win out. The two systems represented
a pair of unstable equilibrium points in competition, so that unpre-
dictable chance factors ended up shifting the balance in favor of VHS.
In fact, if the common claim that the Beta format was technically
superior holds any water, then the market's choice did not even reflect
the best outcome from an economic point of view.

This chapter has been a whirlwind tour through the land of
observations, models, linguistic descriptions, dynamical systems, logical
and visual paradoxes, unstable systems, randomness, algorithmic com-
plexity, irreducibility and a whole lot more. So before moving on to a
more leisurely consideration of science and surprise, let’s try to summa-
rize how these themes fit together to generate the unanticipated.

The economic example involving the dynamics of choice in VCR
tape formats shows how paradoxical, unpredictable and just plain
surprising behavior can emerge even in simple systems when the
components of the system interact in ways that we don't fully
understand. Sometimes the complex behavior is due to nonlinearities
in which the outcome is disproportional to the input; sometimes, as in
the VCR case, the problem lies with inherent, hidden instabilities in
the system. In other cases the source of the counterintuitive behavior
might reside in the dynamical rule itself, as seen in the chaotic
behavior of the Circle-10 system. Paradoxes of various sorts also give
rise to their own characteristic types of surprises, mostly on account
of the presuppositions built into our linguistic descriptions of the
world. These paradoxes are generally static versions of the type of
counterintuitive behavior that comes out of unstable dynamical proc-
esses like the Circle-10 system. There are even situations, which we
shall discuss in Chapter Four, in which surprises can arise when we
ask if there is any computable rule governing a system’s observed
behavior. Taken together, these surprise-generating mechanisms—in-
stability, deterministic randomness, uncomputability, irreducibility—
are the strands from which we can hope to weave a science of surprise.

TWO

THE CATASTROPHIC

Intuition: Small, gradual
changes in causes give rise to
small, gradual changes in

effects.

Look abroad through Nature’s range
Nature’s mighty law is change.
—ROBERT BURNS

In science, each new point of view calls forth a revolution in
nomenclature. g

—FRIEDRICH ENGELS

/
/
/

Mathematicians are a species of Frenchmen; if you say
something to them, they translate it into their own language and
Dpresto! it is something entirely different.

—JOHANN VON GOETHE

CONTINUITY AND COMMON SENSE

Ir} an editorial of April 2, 1985 addressing extinction events like the
disappearance of the dinosaurs, The New York Times stated

43
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Terrestrial events, like volcanic activity or change in climatet or
sea level, are the most immediate possible cause of mass extlflc—
tions. Astronomers should leave to astrologers the task of seeking
the causes of earthly events in the stars.

In this remarkably misguided view of the processes of both natulll'e
and science, the newspaper’s editorial write.rs were arg.;uu.xg t e;
implausibility of a dramatic, unexpected event l.1ke a meteon(t; 1mp3fs
being the proximate cause of the event th.at wxpec'l ou.t thc; inosa -
sixty-five million years ago. With their implied predllectlot? or s;r;loogh;
gradual changes in earthly affairs, I wonder what these editors outh
of the Black Monday stock market crash in October of 1987 or net
Iraqi invasion of Kuwait in the summer of 1990! And, in fallq, rec:rs,
geological evidence argues against an earthly cause of the :nosalldn
demise, strongly suggesting instead that the long-s.ought smoking
gun” of that ancient meteorite strike is a large-impact crater at
i n the Yucatan peninsula. '
Chg:tu lll;?sonot be too harlzi on The New York Times editorial stztili;f.
Everyday common sense certainly does rest to a lar‘ge. degr.ee d?n the
notion of continuity and gradual changes. The b,asm idea is that te1
patterns, processes and structures of daily life don’t change very mu;e
if they are distorted or disturbed by a small amoun7t. So, for examl[t) r;
a minor delay in the subway train’s arrival doesn’t usually nrl:isu i
your being more than a few minutes late to ?vork. And cra . ?g 1t1>p
the temperature in the oven 2 few degrees anher than calle o}: r:'
the recipe does no great harm to the resulting carrot cake. .In short,
intuition and common sense say that small, gradual ch'fmges in causesl
give rise to small, gradual changes in effects. This fundz;r'rll'enta
principle underlies what's technically termed str.uctuml st‘a i ity, (;
crucial property built in to most of the mather‘natlcal df:scnptlons
natural phenomena we've inherited from classical Physws. .
To illustrate this basic idea, Newton’s laws of um'v.ersal gravntatlc'm
tell us that the small disturbance to the Moon’s position and velot;::ty
caused by a stray meteorite strike will eventually fade z'lw;.y—ﬂ- r;ls
leading to no great change in the shape of the Moon’s orbit. Sim ? tgfé
Maxwell’s equations of electromagnetism say tha.t the patterns O o
electric and magnetic fields generated by a moving F:harged pal:}ic e
do not change much if we make small changes in either the path or
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the charge of the particle. So, to a great extent, classical physics is the
physics of structurally stable systems.

And a good thing, too, as it’s hard to imagine how life could emerge
and survive in a structurally unstable world, where every situation
would differ dramatically from every other, and no pattern could be
counted upon to repeat itself in a more or less regular manner. This
kind of world would be totally chaotic, and hardly the sort of
environment in which any sort of evolutionary process could get a
foothold. So a certain degree of stability seems necessary for the very
existence of life itself.

But not all phenomena of earthly concern are structurally stable.
Nor are they continuous. For instance, the unpredictable outcome of
a roll of the dice at the craps table or the turn of a card at the poker
patlor both arise from processes in which a small change in the input
(the position and velocity of the dice or the shuffling pattern of the
cards) can lead to a big change in the final result. And most events in
sports, like a goal in ice hockey or a completed pass in football, are
likewise the end result of such a discontinuous process.

It’s not just in the casino or on the playing field where discontinuity
intrudes into everyday affairs. The same kind of processes also seem
to lie at the heart of phenomena like price fluctuations on Wall Street,
the breaking of waves on the beach and the outbreak of an infectious
disease. In these situations, a seemingly minor change in the original
circumstances—an investor’s decision to buy a stock or an infected
child contacting a playmate—can set off a major shift in the observed
output, be it a market crash or a measles epidemic. Catastrophe theory
is an attempt to go beyond the confines of classical physics by
providing a mathematical framework for describing these types of
discontinuous processes.

During the course of this chapter, the reader will necessarily be
bombarded with a lot more concepts and terrnir(/ology than those
unfamiliar with mathematical phraseology and arcana are accustomed
to digesting. So to provide a framework within which to assimilate
this snowstorm of ideas from the world of dynamical systems and
geometry, a brief, informal overview of what catastrophe theory is all
about may provide a useful crutch for the reader to lean on.

Consider a system like the national economy. Suppose we're
Monitoring some measure of the performance of the economy, say
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the gross national product (GNP). This observed output of the
economic system is determined by many factors—interest rates,
employment levels, productive capacity and the like. We can think of
the economy as a kind of machine; we feed in the value of each of
these input quantities and the machine then produces a level of GNP
as its output. Since the economy is a dynamical process, it’s reasonable
to consider the level of GNP as being a fixed-point attractor of the
economic process. So for every value of the inputs, the economy
moves to a particular level of GNP, which can be envisioned as a point
in the space of states of the economy. And since every setting of the
inputs produces such a point, there is a whole surface of GNP points
that the economy may produce—at least one for every level of interest
rates, money supply, production facilities and all the rest. Catastrophe
theory is designed to study the geometrical structure of this surface.

Generally speaking, if we change the inputs just a bit, the corre-

sponding level of GNP will also shift only slightly. But occasionally
we'll encounter a combination of input values such that if we change
them only a small amount, the corresponding output will shift
discontinuously to an entirely new region of the GNP surface. Such a
value of the inputs is called a catastropbe point. In colloquial terms,
we might think of the catastrophe points as the straws that break the
economy’s back. As it tumns out, these catastrophe points arise at just
those input levels where there is more than one possible fixed point
to which the system can be attracted. And the jump discontinuity is a
reflection of the system’s “deciding” to move from the region of one
attractor to that of another. Catastrophe theory shows us that there are
only a small number of inequivalent ways in which these jumps can
take place, and it provides a standard picture for each of the different
geometries that the surface of attractors can display. The reader shouid
try to keep this simple picture of the goals of catastrophe theory in
mind as we wend our way through the abstractions and applications
that follow."

Catastrophe theory was announced to the general scientific com-
munity in 1972 with the publication of René Thom’s remarkable book
Structural Stability and Morpbogenesis. The initial reviews in the most
respected scholarly journals were extremely positive, containing state-
ments like “Both Newton’s Principia and Thom'’s book lay out a new
conceptual framework for the understanding of nature” (Clive Kilm-
ister in The London Times Higher Educational Supplement) and “it [the
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book] gives me a sense of liberation and enlightenment akin to what
I imagine astronomers must have felt when offered Copernican
heliocentric geometry . . . the sustained inspiration and the vast scope
of the book put it firmly into the best tradition of natural philosophy”
(Brian Goodwin in Nature). But less than five years later we find
statements of the following sort appearing in equally’ prominent
forums: “Exaggerated, not wholly honest . . . the height of scientific
irresponsibility” (Marc Kac in Science) and “Catastrophe theory actu-
'ally provides no new information about anything. And . . . it can lead
to dangerously wrong conclusions” (James Croll in New Sciéntist).
What gives here? How can equally eminent scientists come to such
dramatically different opinions about a mere mathematical theory?
What is it about catastrophe theory that led to statements of such lavish
praise and heated outrage?

We'll answer this puzzling query at the end of the chapter, after
we've had ample opportunity to see catastrophe theory in principle
and in practice. But before jumping into the theory with both feet, a
few words about models and reality are in order. ,

We laid great emphasis in the opening chapter upon the fact that the
scientific answer to a question takes the form of a set of rules, rules
having specific properties and modes of generation. Usually,these
rules are encoded in the form of a mathematical model or, more
generally these days, a computer program. Moreover, the ruies are
used in two quite distinct ways: (1) to predict the outcome of future
observations and/or (2) to explain past observations. Newton’s laws
of celestial motion are the quintessential example of a set of rules used
fgr the first task, while the principle of natural selection in evolutio ary
biology exemplifies the second. Of course, in some cases the sime
set of rules can be used for both purposes, as with Newton’s laws of
motion. But this is generally not the case.

The central ingredient in the catastrophe controversy rests on a
fundamental misperception of the nature of the rules the theory
provides. Many practitioners of the mathematical arts seem unable to
resist the temptation to use the mathematical pictures offered by
catastrophe theory as a tool for prediction. Yet in most cases the
mathematical structure and logic of the theory itself are intrinsically
restricted to offering only explanations. As we shall see shortly, it's
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only in very special situations—mostly in physics—where catastro-
phe-theoretic ideas can be used to actually predict something in a
quantitative way. For the most part, all we can hope to do is obtain
the kind of qualitative guidance offered by Darwin’s principle of
natural selection. In other words, we can usually only get a picture of
a situation, something more akin to an impressionistic painting than
to a photograph. Much of the controversy surrounding the uses and
abuses of catastrophe theory—especially in the social and behavioral
areas—takes the form of rather hysterical outbursts against perceived
attempts by practitioners to use the theory as a vehicle for prediction
in situations where at best it can be used only to explain. Let's now
illustrate these rather general ideas by looking at an example from
recent world events showing catastrophe theory in action.

THE FALL OF THE WALL AND THE COLLAPSE OF A BEAM

On November 9, 1989, the Berlin Wall came tumbling down, symboli-
cally marking the end of Communism in Eastern Europe. While viewed
with equal measures of both happiness and relief by most Westerners,
this event came about with an unplanned abruptness the world is still
trying to understand and assimilate, especially in what has now
become a reunified Germany. Interestingly, in 1979, exactly ten years
before the fall of the Berlin Wall, Christopher Zeeman published a
catastrophe-theoretic model for the shift of political ideologies that
offers 2 mathematical glimpse at how such a discontinuous shift in
political ideologies might actually come about.

Suppose we take as the basic aims underlying a society the ideals
of the French Revolution: liberty, equality, fraternity. Moreover, since
many argue that one of the main advantages of technological progress
is that it will provide everyone with the chance for self-fulfillment, let’s
add a fourth ideal, opportunity. To some degree, these four aims fall
into two conflicting pairs of social goals: an economic conflict between
equality and opportunity, a political conflict between liberty and
fraternity.

Clearly, different individuals in a society will place different empha-
sis on these underlying goals. So let’s assume that each individual’s
emphasis can be measured using two independent quantities, & and b.
For operational convenience, let's assume these variables are scaled
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to lie between 0 and 1. The economic parameter @ measures the
relative emphasis the individual places on opportunity versus equality
while the political parameter b measures the relative emphasis placeci
on fraternity as opposed to liberty. So we are assuming that the
ideological position of each individual can be represented by a point
in a two-dimensional space of parameters P, whose elements consist
of pairs of numbers (4, b). This space of parameters is shown in
Figure 2.1.

Now we want to plot the opinions of individuals on societal matters
such as censorship, free speech, unions, sccialized medical care and
free education. Suppose there are 7 such issues phrased as questions
and that the answers given by any individual are expressed on a
scale ranging from “strongly prefer” to “strongly against.” Further
assume that we can associate these responses to some numericai
measure of preference. The 7 questions then determine the axes of an
n-dimensional space X, so that the answers given by each individual
can be represented by a point x in this space.

With the above conventions, each person in the society can be
represented both as a point in the parameter space P, representing
that individual’s views on the overall economic and political goals of
the society, and as a point x in the space of opinions X, representing
the individual’s views on specific social issues. Since P is two-
dimensional and X is n-dimensional, each person’s views can be
represented by a single point in a space of dimension # + 2. Geometri-
cally, the society as a whole can then be pictured as some great cloud

of points in this space. We'd like to know more about the shape of
this cloud.

liberty
b political freedom P
economic economic
equality opportunity TF'HKE“S’::C§C:F INDIVIDUAL
IDEOLOGIES
fraternity
political power
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Let's assume that for each point p in the parameter space P (i..e.,
for each individual who holds to a particular set of ideals), thero‘:e 1's a
distribution of opinions on the social issues su.ch that these opinion
points in the space X tend to cluster near a point x;,. In chc?r word§,
if individuals share a similar emphasis upon the four basic aunsz their
opinions on social matters tend to be close together. V'V.e can think (‘)f
these points x, as being the places where the probabxhty. of a certain
response to the questions is higher than aF any nearby point. But note
that there may be several such local maxima. '

Sociologically speaking, we can interpret each .such local maximum
point as a particular kind of stable “ide9logy,” in the sense that the
opinion represented by such a point x; is shared l?y a large s’egmer;t
of society. We call it stable because a small change in a person’s 1d.ea s
from p to p* doesn’t change that individual’s response to the ques.n.ons1
very much; hence, the response point % is very near the Ongm;j
point x;,. Most of the major political parties in the Western wc?r
exemplify stable ideologies in this sense. On the other hand, points
where the opinion profile is a local minimum corre.:spond to unstable
ideologies for obvious reasons. A political party like, say, Fhe sho:ci
lived Symbionese Liberation Army of Patty I“’Iearst fame is a go !
example of an unstable ideology, as it wouldn't tak.e much by way o
change in its members’ opinion profiles to dramatically change their

social questionnaire.

res&zgf:rsniizzeargume?lts show that the set of all sqch critical pf)intS
Xp (ideologies) forms a two-dimensional surface, which fqr notatlon.al
convenience we shall denote here as S. Clearly, as we shift the soc.lal
goals (ideals) away from the point p a little bit, the corresponding
ideology also usually moves only a small amount. Howev.er, at some
values of p there may be an abrupt shift from the current ideology to
another. This happens when the change in goals causes a lgcal
maximum point to cease being a maximum. CaFastrop‘he theory gives
us a tool by which to study how these id.eologlcal shifts come about
as a consequence of variations in the societal goals' D

Under the foregoing conditions, the mathematics of cgtastrop'he
theory assures us that the geometry of th.e surface $ of ideologies
almost always looks like that shown in Figure 2.2. We 1i say more
about this “almost always” part a bit later. For now, let it sufﬁge to.say
that this is the typical, or generic, geometry governing such a sxtuathn.
Note the shaded regions N, and N, in the parameter space of social
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FIGURE 2.2. SURFACE OF IDEOLOGIES

ideals. These are what we might call conflict regions, in the following
sense. Suppose that p is the profile of an individual on the boundary
of a conflict region. At this point the probability distribution of answers
to the questions about societal issues has two stable local maxima
(i.e., two stable ideologies), represented by points on the upper and
lower sheets of the surface S. These maxima are separated by an
unstable local minima in the shaded region of S, which corresponds
to a centrist-oriented authoritarian regime—a political ideology not
likely to persist in the world of Realpolitik. Thus, the surface is
two-sheeted over a neighborhood of any such conflict point p.

As we leave either of the conflict regions, one of the two modes is
preserved and the other has to disappear. For example, the current
ideology in Russia seems to be a transition from the region N to
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anarchy. If we further assume that one of the modes is preserved on
one side of the region and the other on the other side, we find that
the surface S must then have an S-shaped fold over the conflict region
N,. Similarly, catastrophe theory tells us that the two folds forming the
boundary of the conflict region N; must come together in a cusp
singularity at the point where the two fold lines meet. With this general
model for the shift of ideologies in mind, let’s see how it can be used
to explain the downfall of Communism.

Prior to 1989, the situation in all the states of Eastern Europe was
that of an authoritarian-left political ideology. In terms of our catas-
trophe diagram, this means that the societal goals were dominated by
points in the part of the parameter space P corresponding to greater
economic equality. Recalling our definitions of the parameters @ and
b, this means that the goals of these societies were predominantly
focused on fraternity (political power). But since the 1989 shift in
ideologies was discontinuous (i.e., rapid and dramatic), Figure 2.2 tells
us that this could happen only if the economic parameter 4 was in
the conflict region N,. Moreover, the only way an authoritarian-left
regime can discontinuously change to a new ideology is for it to move
to greater economic opportunity (increasing &), thereby jumping to a
right-leaning regime on the upper sheet of S.

Further examination of the figure shows that this change can be
either toward the liberal-right, if there is a simultaneous movement
toward liberty (decreasing b) along with the move toward economic
opportunity, as in modern-day Hungary or Poland, or toward an
authoritarian-right regime like Singapore, if the political mood is
focused primarily upon opening up economic opportunities. But the
one thing that cannot happen is a rapid, discontinuous shift from an
authoritarian to a liberal regime, because the only such transition isa
smooth path on S in the direction of decreasing economic equality
(i.e., decreasing b). And, of course, this impossible jump is exactly
what we've seen national leaders trying in vain to bring about over
the past few years in, for example, many of the former Iron Curtain
countries.

This political ideology example underscores all of the main assump-
tions, strengths and weaknesses of catastrophe theory. It's worthwhile
to pause here for a moment to summarize these various facets of the
theory. But since catastrophe theory is a mathematical theory, to do
this we shall have to temporarily forsake the real world for the world
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of abstractions. We'll get back to terra firma as soon as these general
catastrophe-theoretic ideas are firmly in hand.

In the opening chapter, we saw that there are three basic types of
attractors for dynamical systems: fixed points, periodic orbits and
strange attractors. What's called elementary catastrophe theory (the
only part that's really in good mathematical shape) deals directly with
only those systems whose attractors are fixed points. For such systems

each value of the input parameters determines at least one ﬁxed—poin;
attractor to which the system will try to move. So as we run through
all .possible parameter values, a surface is generated, each of whose
points is an attractor of the dynamical process. As stated earlier, we
can think of catastrophe theory as a way of classifying the pos;ible
georfletries of this surface of fixed points. What the theory’s founder

F(ene Thqm, called a catastrophbe (apparently the French catastmpbé
is not quite so catastrophic as the English catastropbe) corresponds
to those parameter values where the fixed point governing the
system’s behavior shifts from being a stable attractor to an unstable

one. This is how a small change in something (a parameter value) can

lead to a discontinuous shift in something else (the particular fixed

point to which the system is attracted).

Of crucial importance in this setup is the notion of a family of
functions. Let’s illustrate the idea in a particularly simple setting.
Spppose we consider the set of functions whose graphs are shown in
Figure 2.3. Observe how curve (b) passes through the origin horizon-
tal.ly. However, an arbitrarily small perturbation of this curve near the
or.lg'in can lead to the nearby curve (c), which has two humps (a local
minimum and a local maximum), or to curve (a), which has no humps
at all. Note, though, that a similarly small distortion of either curve (a)
or curve (¢) near the origin preserves the geometric character of those
curves—two humps, or critical points, for curve (c) and none for curve
(@)—rather than destroying the hump structure as was the case for
curve (b). Thus, what we have here is a family of curves that is stable
as‘a' Jamily since the geometric character of the critical point at the
origin remains unchanged when almost every member is jiggled
Just a little bit. But there is one “black sheep” member of the family
ict;mle ), Yvhich is unstable when considered as an individual since:

geometric structure does change if it's disturbed even a little bit.
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FIGURE 2.3. A FAMILY OF FUNCTIONS

To see this stability issue more clearly, think of curve (b) as being
an elastic band. If you push just a little on the band at the origin, it
may distort to either curve (a), having no critical points (humps) or
to curve (¢), having two such points. It all depends on exactly how
you push on the band. But if the band starts in the shape of curve (a)
or curve (c), a small enough push cannot create or destroy the curve’s
geometric structure. This is why we call curve (b) unstable and curves
(a) and (c) stable.
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In our political ideology example, the relevant family of functions
is the set of probability functions characterizing the distribution of
answers to the social questions. These functions are labeled, or named
(technically, parameterized), by the points p of the social goal space.
So for every profile p of social goals or ideals, there is a particular
probability distribution describing the likelihood of the answers given
by people having that profile p. The unstable members of this family
correspond to those distributions for which the opinion point X, ceases
to be a local maximum when we vary p, thereby forcing the dominant
ideology to shift discontinuously to 4 new point on the ideological
surface.

So to summarize, catastrophe theory deals with the fixed points of
families of functions. The catastrophes occur when, as we move in a
continuous way through the family—usually by smoothly changing
parameters describing the system—a stable fixed point of the family
loses its stability. This change of stability forces the system to move
abruptly to the region of a new stable fixed point. Note that in the
ideology example it was not necessary to know the exact form of the
probability functions forming the family. We needed only to assume
their existence, at which point catastrophe theory tells us the possible
types of geometries that the surface of fixed points can have.
Nevertheless, it seems reasonable to assume that if we know the
precise mathematical form of the family members, we can say a lot
more about the situation, perhaps even being able to make some
quantitative predictions about what the system will do. Sometimes we
do have such knowledge, especially when the system under investi-

- gation is one from physics. Let’s now return to the real world and look

at just such a situation.

Buckling Beams

In the opening chapter we saw a tragic example of how mechanical
structures can fail when we considered the seemingly paradoxical
collapse of a Kansas City hotel balcony. Here we consider a very
simplified version of this situation, involving the buckling of a column
or beam.

Suppose we have an elastic strut of length / subject to a force K
exerted at each of its ends. The inherent symmetry in this situation
will be destroyed due to manufacturing imperfections, causing the
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beam to buckle either upward or downward as K is increased. If the
beam buckles upward and we agree to measure the amount of
buckling by the quantity x, we end up with the situation shown in
Figure 2.4.

Assume now that there is a load L applied to the center of the strut.
Then the displacement x will decrease continuously until the load
reaches a critical value at which point the strut will suddenly jump
from being buckled upward to a downward-buckled state. Catastro-
phe theory enables us to study these discontinuous shifts as we
smoothly vary the two parameters K and L. Figure 2.5 shows the
various possibilities.

Initially, the beam is in an unbuckled state (x = 0). As the two
parameters change along the numbered path in Figure 2.5, the strut
behaves in the following manner: nothing happens as K increases
until the cusp point is reached, whereupon the strut begins to buckle
upward. More than two hundred years ago, the Swiss mathematician
Leonhard Euler showed that this occurs when K = n?A/1%, the quantity
A serving to measure the elasticity of the strut. As K'is further increased
along path 2, the strut buckles more sharply. If we now keep K
constant and increase L along path 3, the displacement gradually
lessens until at the point P’ it jumps onto the other sheet of the
behavior surface, which corresponds to a sudden snap into the
downward-buckled state. If the load L is decreased toward point 4,
the amount of buckling x changes continuously, the strut maintaining
its downward-buckled state past the point P’. In other words, it does
not return to the upper surface until it reaches Q°, at which point it
suddenly snaps into the upward-buckled state.

You might well ask, How do we know that the geometry shown
in Figure 2.5 is the right one for this situation? The answer ultimately
rests with the precise mathematical form of the function characterizing

FIGURE 2.4. AN ELASTIC STRUT
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FIGURE 2.5. GEOMETRY OF BEAM BUCKLING

the total energy of the system. Readers interested in the details of this
energy function are invited to consult the To Dig Deeper section for
this chapter. Classical physics tells us that the beam will always seek
a state that minimizes the total energy. Since the expression for the
energy defines a family of functions, each member of the family being
characterized by a particular value for the two parameters K and L
we have the same situation as for the political ideology example—witli
the notable difference that for the beam we actually know the
mathematical form of each member of the family. The machinery of
f:atastrophe theory then allows us to assert that the geometry shown
in Figure 2.5 is indeed the one governing the behavior of the beam.
Actually, catastrophe theory tells us much more. It asserts that the
geometry of Figure 2.5 is universal for all systems in which two input
parameters govern the behavior of a single output variable. This
startling fact is but one of the conclusions that can be drawn from the
famous Classification Theorem of elementary catastrophe theory.

THE MAGNIFICENT SEVEN

Tak.e a sheet of ordinary notepaper. Crumple it up any way you wish,
sul?]ect to the sole proviso that you don't crease it. In other words, the
twists and turns in the paper must all be what mathematicians and
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laymen alike would term smooth. Now pretend you're a fly walking
around on the surface of this crumpled-up wad of paper. What would
you see? The answer to this question sparked off one of the major
developments in modern mathematics, the theory of singularities of
smooth mappings.

In 1955, Hassler V. Whitney showed that when you scrunch up a
piece of paper without putting any creases into it, any point on the
resulting wad is one of three types: (1) a regular point, around which
the surface is flat, (2) a fold point, where if you move away from it
just a bit in the wrong direction, you fall off an edge, and (3) a cusp
point, which is where two lines of fold points come together. The
overall situation is shown below in Figure 2.6. It's important to note
here that what's shown in the diagram is only the local geometry, a
kind of magnified version of a small part of the surface of the paper.
Globally, the wadded-up paper may consist of many such regions of
regular, fold and cusp points.

In more formal terms, we can regard the above paper-crumpling
exercise as simply a mapping that takes points of the original flat sheet
of paper onto the points of the two-dimensional surface of the
crumpled ball of paper. Whitney’s result, that there are only three
fundamentally different ways to wad up the paper without creasing
it, serves as a role model for what René Thom was trying to do for
surfaces of dimension greater than two.

In contrast to our earlier examples of ideological revolutions and
bending beams, the paper-folding problem doesn’t seem to involve
any parameters; hence, there doesn’t seem to be any natural family
of functions involved here. So where does the family of functions
needed for catastrophe theory come from in this paper-crumpling
situation?

The answer is fairly straightforward, residing in the fact that there
are many different ways to smoothly deform a sheet of paper. Each
of these ways can be thought of as a different mapping transforming
a plane (the original flat sheet of paper) into a wadded-up piece of
paper. But this wad is just another plane, topologically speaking, since
it can be smoothed out into a flat sheet. Hence, the family of functions
is simply the collection of all such ways to smoothly crumple a piece
of paper (i.e., ways to smoothly map a flat surface like a plane to a
plane). The generic way results ina planar surface having only regular,
fold and cusp points. These mappings are the stable members of the
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FIGURE 2.6. THE LOCAL STRUCTURE OF A CRUMPLED SHEET OF PAPER

family. Bu.t as we run through the different ways of twisting, folding
and bendngg the‘ paper, we will occasionally encounter singular
transformations giving rise to more complicated types of points, like

. apleat. However, the slightest change in these atypical transformations

leads back to one of the “nice” crumpli i
plings. Thus, the singul
transformations are unstable. B

The Classification Theorem

The celebrated Classification Theorem tells us the generic ways to
move through a function family characterized by up to six parameters
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(inputs) and no more than two behavior variables (outputs). The
Theorem assures us that if we have a system characterized by, say,
two input parameters and a single behavioral output, then tl.le
geometry relating the inputs to the output is typically t.hat shown in
Figure 2.7 (where the inputs are labeled a and b, while the output
quantity is called x). This is the so-called cusp geometry, the nomen-
clature arising for reasons that we’ll make clear in a mot.nent. Again,
when we say this geometry is typical, we mean t.hat if the actual
description of the system at hand does not display this geom.etry, then
that description is unstable. So an arbitrarily small perturbation of the

STABLE
POINTS

FIGURE 2.7. THE CUSP GEOMETRY
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original system will take us to a stable description. And the cusp
geometry of Figure 2.7 is a universal picture of all stable descriptions
of systems having two inputs and one output.

To see how the Classification Theorem arrives at such far-ranging
conclusions, consider again the function family shown earlier in
Figure 2.3. This diagram is actually an abridged edition of a complete
diagram that would show a family containing an infinite number of
functions, one member for each value of a single parameter 4. In more
colloquial terms, we might think of each value of @ as being the “name”
of one of the functions in the family. So as we let a take on different
values, we move through the members of this family, one by one,
going from members having no critical points (humps) like curve (a)
to family members like curve (c) having two critical points. As already
noted, both these types of functions are stable in the sense that if we

' perturb them just a bit (i.e., change a by a small amount), we come

to a nearby member of the family having the same number of humps.
So in this entire family of functions, only curve (b) is atypical, or
nongeneric, in this sense.

A lot of high-powered mathematics, mostly from the field of
singularity theory, shows that any family of functions parameterized
by a single variable can be transformed by a smooth change of
variables to exactly the family of descriptions shown in Figure 2.3. So
this is a universal, or canonical, picture of how one input can give
rise to one output. The overall geometry for this situation, termed the
Jold, is shown in Figure 2.8. Note that the unstable member of this
family corresponds to the member whose “name” is a = 0. The point
a =0 is called a catastrophe point. For positive values of a, the family
members have no critical points, while for negative values they have
two critical points—one a local minimum, the other a local maximum.

The Classification Theorem gives us the standard geometry for all
functions having at most six input parameters and one or two output
variables. The seven canonical geometries for up to four inputs are
listed in Table 2.1. The table gives only the pet names for these various
cases rather than the explicit mathematical formulas characterizing
each standard geometry. Moreover, since Thom’s original result only
went up to four inputs, our listing stops there as well. For the complete,
extended classification together with its associated mathematical
finery, we invite the interested reader to consult the references cited
in the To Dig Deeper section.
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FIGURE 2.8. THE FOLD GEOMETRY

Examining the mathematical mandala of Table 2.1, the right ques-
tions for the reader to be asking about now are, What do all these
mystical incantations about folds, cusps, butterflies, umbilics and all

TABLE 2.1.
SEVEN ELEMENTARY CATASTROPHES
Number of Inputs One Output Two Outputs
1 Fold —
2 Cusp —
3 Swallowtail Hyperbolic umbilic
Elliptic umbilic

4 Butterfly Parabolic umbilic
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the rest really mean? Where do these colorful terms come from? And
how can they be used to answer interesting questions about real-world
situations? Let’s first settle the terminological issue.

Cusps and Butterflies

Suppose we take the cusp surface M shown in Figure 2.7, putting
the plane of the two parameters @ and b beneath it. Now project the
surface M vertically down onto this plane. Under this projection,
the two fold lines map into the two branches of the curve C in the
plane, while their intersection, the cusp point, corresponds to the
parameter values a = b = 0. The entire situation is shown schematically
in Figure 2.9. .

The reason this situation is called the cusp is that the mathematical
expression for the curve C is a formula that algebraic geometers term
a cuspoid, since it involves two curves coming together in a sharp,
spikelike intersection that looks like what in everyday language is
called a cusp. And the fact that it's necessary to “jump” or “fall” from

x M

CATASTROPHE
SET

FIGURE 2.9. THE CUSP GEOMETRY
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one sheet of the surface to the other when crossing a fold line gives
rise to mathematical (although not necessarily real-world) “catastro-
phes.” So the entire picture of Figure 2.9 is, by abuse of language,
often termed the cusp catastropbe. Just to cement these terminological
ideas in place, let’s look at one of the higher-dimensional catastrophes,
the butterfly.

As noted in Table 2.1, the butterfly catastrophe involves four input
parameters. But since we have not yet mastered the delicate art of
drawing in four dimensions, it’s impossible to represent the complete
situation pictorially in one fell swoop as for the cusp. So we’ll have
to content ourselves in this case with depicting only sections of the
butterfly surface determined by subsets in the space of the four input
parameters. Let’s call these parameters &, b, ¢ and d, and begin by
considering the situation when 4 is negative and b is zero. The butterfly
surface for this case, along with its projection onto the parameter plane
determined by ¢ and d, is shown in Figure 2.10. We see immediately
from this projection why this situation is called the butterfly catastrophe.

The reader should note in the figure how all the catastrophes
preceding the butterfly on Thom'’s list (the fold, cusp and swallowtail)
appear as special cases of the butterfly. So, for instance, if we section

FIGURE 2.10. THE BUTTERFLY GEOMETRY FOR A< 0, B=0

THE CATASTROPHIC 65

the butterfly surface by fixing the values of ¢ and d equal to zero, the
butterfly reduces to the cusp. In a similar way, sectioning the cusp
manifold of Figure 2.7 by setting b equal to zero leads to the fold
catastrophe. So as we add input parameters, the old behavioral modes
are retained as special cases of the new patterns that appear.

As we saw in the political ideology example considered earlier,
what's important about the butterfly is the possibility for a third mode
of stable behavior to emerge, above and beyond the upper and lower
sheets possible with the cusp. This occurs in the blackened pocket-of-
compromise region shown in Figure 2.10. By varying the parameters
¢ and d, this stable region of compromise behavior may be broadened,
narrowed or made to disappear entirely. The various possibilities are
indicated in Figure 2.11, which shows cross-sections of the complete
butterfly catastrophe set.

While these matters are of great interest to mathematicians, it’s hard
not to wonder just a bit how this discussion of stable and unstable
functions, catastrophes, cusps, butterflies and all the rest connects up
with everyday phenomena like wars, water waves and collapsing
beams. So with this mathematical armada at our beck and call, let’s
turn to the matter of linking catastrophes to life.

PHYSICS AND METAPHYSICS

Consider a bundle of light rays emanating from a point source. As
these rays move, they encounter some medium—a mirror, a lens, an
opaque object—that reflects, refracts or obstructs them. One of the
most common ways this pencil of rays can be redirected is to be
reflected off a mirror. Or light rays shining through a kitchen window
might bounce off the inside of a coffee cup, as shown in Figure 2.12.
The pattern of light reflected off the inside of the cup is what's termed
a light caustic. By making use of Fermat's Principle, which asserts that
light rays travel from one point to another along a path of minimal
time, these caustics can be calculated and explained using catastro-
phe-theoretic arguments. Let’s sketch the basic idea.

First we write down the algebraic expression for the length of the
path from the light source to an arbitrary point on the surface of the
coffee inside the cup, assuming the ray reaches this point after having
been reflected from a point on the inner surface of the cup. Fermat's
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FIGURE 2.11. THE COMPLETE BUTTERFLY GEOMETRY

Principle then says that the path the ray travels from the source to the
point on the coffee’s surface via the reflection point on the cup must
be as short as possible. Alternatively, we can invoke Snell’s .Law,
stating that the angle the light ray makes when it strikes thc.e inner
surface of the cup must equal the angle it makes upon leaving the
surface (ie., the angle of incidence equals the angle of reflection).
Both approaches lead to the picture shown in Figure 2.13. Employing
a modicum of algebra, we find that the equation for the half-moon-
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FIGURE 2.12.
LIGHT RAYS STRIKING A COFFEE CUP

shaped arc (i.e., the caustic) also describes the fold lines of the cusp
catastrophe, shown earlier in Figure 2.9. .

So here we’re in much the same situation as in our earlier example
of the bending beam. We have a function describing the behavior of
the system, together with a principle of physics asserting that the states
we will observe coincide with the places where that function takes
on its extremal (i.e., largest or smallest) values. And since these
functions involve a single behavioral variable (the point on the inner
surface of the cup/the deflection of the strut) and two input parameters
(the coordinates of the point on the coffee’s surface/the force and load
on the beam), we suspect that the governing catastrophe is the cusp.
The mathematics of catastrophe theory allows us to validate this
conjecture.

/

FIGURE 2.13.
A UGHT CAUSTIC
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The foregoing line of argument doesn’t depend on the shape of the
surface from which the light is being reflected; it would apply equally
well to a case in which the light is focused by a lens rather than
reflected by a coffee cup. Even in these more general cases, the
caustics are still catastrophe points. However, since they are generally
two-dimensional surfaces in space, there can be no more than three
input parameters. Thus, from the Thom Classification Theorem we
conclude that the only structurally stable caustics that we will ever see
are folds, cusps and sections of the swallowtail, and elliptic and
hyperbolic umbilic catastrophes. But does this mathematical predic-
tion jibe with what's actually seen in the real world?

In laboratory experiments, Michael Berry of Bristol University in the
UK. has examined this question by looking at caustic junctions where
several bright lines of light come together, like the rippling patterns
seen on the bottom of a swimming pool. A casual glance suggests that
these are three-way junctions, a pattern often found in nature in things
like cracks in dry lake beds and the branching structure of the veins
on many types of plant leaves. But the mathematics of catastrophe
theory argues that this kind of pattern is very unusual, in the sense
that it is structurally unstable; no catastrophe surface has a cross-
section displaying such a pattern. So what's the story? Do these triple
junctions occur regularly in nature? If so, the predictions of catastrophe
theory must be wrong. Or can it be that catastrophe theory is right,
and it’s our observations that are wrong?

To settle this matter, Berry and his associate J. F. Nye set up
equipment to produce and photograph caustic junctions in the lab.
Looking through a high-power microscope, they discovered pre-
viously unsuspected fine structure in the junctions. What had earlier
appeared to be triple junctions were in fact curved triangles having
exactly the structure predicted by the catastrophe-theoretic analysis.
So it turns out that catastrophe theory is right after all when it comes
to describing and predicting naturally occurring light caustics.

What makes the catastrophe-theoretic magic work so well in this
case is the fact that when studying the path of light rays, we have an
explicit mathematical expression available for describing how the light
moves through the medium. In the simplest case, Fermat’s Principle
gives a mathematical formula to which we can apply the formal
operations of catastrophe theory to tease out the patterns and paths
that the light rays will follow. This is an example of what's often termed
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the physical way of catastrophe theory: take an explicit mathematical
expression for the phenomenon under study, and apply the methods
of singularity and catastrophe theory to reduce this representation to
the canonical geometry (or geometries) that the mathematics ensures
must characterize the process.

The basic question here, of course, is Where did that mathematical
representation come from in the first place? Once you have it, the tools
and techniques of catastrophe theory can help in squeezing out every
last bit of information from it. But how do you get it? And what, if
anything, can be done if you don’t know the governing mathemati’cal
relations beforehand? As a way station on the road to answering this
query, let’s move through the territory of the biologist and talk about

how c.ells perform the miraculous task of organizing themselves into
organisms.

Catastrophes and Morphogenesis

The greatest unsolved problem in biology, the real terra incognita of
the field, is the enigma of embryology. How is it that an initially
homogeneous ball of cells can differentiate and organize itself into
one of the myriad species of living things we see roaming the four
comers and swimming the seven seas of the Earth today? This is the
problem of cellular differentiation and morphogenesis, or the emer-
gence of form. Stimulated by work on morphogenesis in the late 1950s
by the British developmental biologist C. H. Waddington, René Thom
originally developed catastrophe theory as a mathema’tical way of
addressing this very question. And to this day catastrophe theory
remains the leading candidate to provide a rational explanation for
how the local gertetic coding in individual cells could cause the global
upfolding of the embryo. As Thom once put it, “In developmental
biology, how could they [biologists] hope to solve a problem they
cannot even formulate?”

' In his classic 1917 book On Growth and Form, D’Arcy Thompson
discovered that by drawing one species of fish on a rectangular grid
and then deforming the grid by what we would now call a smooth
coordinate transformation, he could obtain remarkably close like-
nesses of quite different, though closely related, species. An example
is shown in Figure 2.14 where, starting with the species in the upper
left-hfmd comer, we obtain the other three species by different
bendings of the original rectangular grid. In carrying out these
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FIGURE 2.14. RELATED SPECIES OF FISH OBTAINED BY COORDINATE TRANSFORMATION:
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cell or a muscle cell or a brain cell? And once its fate is decided, how
does the cell know the correct spatiotemporal pattern to follow in
order to take its proper place in the final adult organism? In a nutshell,
these questions constitute the mystery of morphogenesis.

Nobody really knows how the fate of an individual cell is decided.
What is clear, however, is that neighboring cells interact and that there
are chemical gradients within the growing embryo. One of the first
researchers to propose an explicit mathematical model to explain
development based on these chemical gradients was, surprisingly
enough, the computer scientist Alan Turing. In 1952, Turing proposed
a mathematical model involving the processes of reaction and diffu-
sion of various unspecified chemical compounds that he termed
morpbogens. Many investigators since that time have developed
Turing’s idea to a high degree of mathematical sophistication, leading
to the current conventional wisdom in developmental biology that the
ultimate fate of each cell is decided by the concentrations of various
morphogens. These concentrations, in turn, are assumed to be deter-
mined by a dynamical system describing how the morphogens interact
and change their levels and types over the course of time.

Adopting Turing'’s basic idea, it’s reasonable to suppose that there
are time-dependent changes going on in the cells. To keep things as
simple as possible, assume that the fate of each cell is decided by a
single morphogen whose concentration is the fixed-point attractor of
a dynamical system. These attracceg will, of course, depend on
hundreds, or even thousands, of biochemical variables, which in turm
generate the postulated morphogen. We can think of these biochemi-
cal quantities as being internal variables, inaccessible to observation.
So the only observed output of the system is the single quantity, the
morphogen concentration. Since there are only four independent
directions in space and time in which we can look at the developing
organism, there are four independent input variables.

We now find ourselves in a familiar situation: a single output
variable (the morphogen concentration) depending on four input
variables, the spatial and temporal directions in which we can observe
the developing embryo. We can think of these inputs as being knobs
to twist, each setting specifying a particular location in space and time
at which we observe the organism. Generally, the morphogen con-
centration, hence the observed properties of the organism, will vary
smoothly as we slowly and continuously twist the knobs. However,



792 COMPLEXIFICATION

N

for some knob settings, more than one stable morphogen concentra-
tion will be possible. This results in the formation of “frontiers”
between different types of tissues and between these tissues and the
spatial region outside the organism (i.e., the outside world). Thus, we
conjecture along with Thom that in the local vicinity of a particular
point in space and time, the physical form of the developing organism
will be determined by one of the seven elementary catastrophes listed
earlier in Table 2.1.

It turns out that each of the “magnificent seven” catastrophe types
listed in Table 2.1 can be given both a spatial and a temporal
interpretation, depending upon whether we interpret the input vari-
able(s) as space or time. Table 2.2 lists these possibilities.

As an illustration of how to make use of these interpretations, consider
Figure 2.15, which shows a section of the parabolic umbilic catastrophe.
The spatia! interpretation of this catastrophe (from Table 2.2) suggests
the formation of a mouth, which is indeed a good image of what seems
to be emerging as we take different sections of this catastrophe surface.
Here the figure shows a striking similarity between the section of the
parabolic umbilic and a bird’s beak. Many other examples of this sort
can be found in the references cited in the To Dig Deeper section for
this chapter.

Developmental biology is an area somewhere between physics and
philosophy when it comes to being able to write down an explicit
mathematical representation for the underlying dynamical processes.
We know something about these morphological processes. But we
don't know nearly as much as we know about phenomena like the

TABLE 2.2.
SPATIAL AND TEMPORAL INTERPRETATIONS OF CATASTROPHES

Temporal Interpretation

Catastropbe  Spatial Interpretation

Fold Boundary Beginning (ending)
Cusp Pleat; fault Separating [unifing); changing
Swallowtail Split; furrow Splitting; tearing
Butterfly Pocket Giving (receiving); filling {emptying)
Hyperbolic umbilic ~ Wave crest; arch Collapsing; engulfing |
Elliptic umbsilic Spike; hair Drilling
Parabolic umbilic Mouth Opening {closing); ejecting
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FIGURE 2.15. A SECTION OF THE PARABOLIC UMBILIC CATASTROPHE

light caustic studied earlier. Still, for intrepid explorers, ignorance of
mechanism is never a deterrent to a search for knowiedge. So let’s
push on even deeper into the twilight zone of speculation, considerin

how one might use catastrophe theory as a vehicle f,or modeling
something as vaguely specified as the death of a civilization. ¥

The Collapse of Civilizations

In studies of the collapse of ancient civilizations such as the Classic
Maya., Mycenaean and Hittite, British archaeologist Colin Renfrew has
identified the following characteristic features in the collapse phase:

* Disappearance of the traditional elite class

* Collapse of the central administrative organization
* Collapse of the centralized economy

* Settlement shift and population decline

Dfunng the ?ﬁe@ath period, we observe a transition to a lower level
of sociopolitical integration and the development of a romantic Dark

Age myth. In additi i i
feamre};t: ition, such collapses display the following temporal

* The collapse may take on the order of one hundred years for
cqmpletion, although in the provinces of an empire the
w.lthdrawal of central authority can occur more rapidly.

* Dislocations are more evident early in the collapse period and
show up as human conflicts like wars and destruction.

* Border maintenance declines during the period so that outside
pressures can be seen in the historical record.
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¢ The growth of many variables like population, exchange and
agricultural activity follow an S-shaped logistic growth curve (see
the description of Cesaré Marchetti’'s work in the opening chapter).
« There is no obvious single cause of the collapse.

As a first step toward capturing this system in formal terms, let’s follow
Renfrew and take the observed output variable for such collapses to
be D, the degree of centrality or control of the governing authority.
As input parameters, we use investment in the charismatic authority /
and net marginality for the rural population M. Here charismatic
authority is not a measure of popularity or belief. Rather, it is the
energy the society assigns to cultural devices used to promote
allegiance to the central authority. The second input variable relates
to the economic balance for the rural population. On the assets side
are the fruits of their agricultural or craft activities. Liabilities include
the material contributions, in goods or labor, required of them by the
central authority as the price of citizenship and to escape punishment.
Thus, the net marginality is the degree to which the assets outweigh
the liabilities.

Using these quantities, together with the very big assumption that
the underlying dynamics linking these inputs and output is smooth
and has only fixed points as its attractors, the Classification Theorem
assures us that the right geometry for this situation must be the cusp.
Using this result, Renfrew arrived at the geometrical picture for the
decline and fall of the society shown in Figure 2.16.

We can use this diagram to plot the course of a typical system’s
collapse like that of the Mayan or Mycenaean civilizations. Following
Renfrew’s account, the story starts at point 1. Marginality is low,
implying that investment is in a charismatic authority. Furthermore,
the degree of centrality is low, so this is a prosperous noncentered
society, which may well be egalitarian. If 1, the commitment to the
charismatic authority, increases through points 2 and 3, the degree of
centrality also increases. Such an increase might come about, for
example, as the response to an external threat. Thus, the state
develops. But marginality may now increase as well since it is no
longer easy for the rural population to increase the per capita yield in
order to make the additional contributions required by the central
administration. As population increases, fertility decreases and/or the
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FIGURE 2.16. CUSP CATASTROPHE MODEL OF SYSTEM COLLAPSE
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tax burden is augmented; thus marginality increases, leading to a
corresponding increase in I to point 4. ’

Now the system is under stress, with high marginality, and /
decreases slightly to point 5. In addition, there is now a lowe’:r value
of .D for which efficiency is also a-maximum. But it’s not until
point 6a, when the local maximum vanishes altogether, that the value
of D changes suddenly (point 6b). This very rapid drop involving the
collapse of the central government brings in its wake many other
changes. In particular, the central personnel, no longer exercisin
control or imbued with the charisma that accompanies it, can ncg)
longer command /, the investment in charismatic authority. ’I:he sha
collapse of D (the rupture of centralized control) is followed b tl?;
rapid but slower diminution of 7 to point 7. The administr);tive
population, with its specialist officials and craftsmen, either dies

emigrates or returns to rural cultivdtion, and inality i
. marginality is r
o o 1, , ginality is reduced



76 COMPLEXIFICATION

Here we might ask why at least two input parameters are needed
to explain the observed dynamical behavior of these types of col-
lapses. Wouldn't it be possible to simplify things even further by using
just a single input, thereby simplifying the model to that of the fold
catastrophe? It turns out that this cannot be done. The reason we need
two independent inputs is that such cultural systems often display the
phenomenon of divergence, in which a very small change in the initial
level of I, the investment in charismatic authority, can result in the
system’s ending up in a radically different final state (on the upper
sheet in the diagram, say, rather than on the lower) as we increase
net marginality. Such a smooth divergence from nearby initial values
of I cannot happen in the fold geometry with its single input variable.

Renfrew’s cusp model describes a bimodal polity involving a rapid
transition from a centered to a noncentered society, as measured by
the degree of central authority. But suppose we want to consider the
possibility of a third type of social structure corresponding to, say, a
tribe or chiefdom, as opposed to the extreme of an egalitarian society.
As we've already seen, the simplest catastrophe geometry that admits
this type of intermediate behavior is the butterfly, which involves four
input variables. So we’re going to have to add two additional factors
to the quantities 7 and M used above. Let’s take Tand K as these two
new quantities that determine whether or not a tribal structure is
possible. The problem is what kind of interpretation to give to these
new inputs. What do these purely mathematical necessities really
mean in the context of chiefdom formation? Looking at the butterfly
geometry of the situation will help us answer this question. This
geometry is shown in Figure 2.17.

Translating this picture into words, only bimodal behavior is
possible and local chiefdoms cannot arise when the butterfly factor K
is negative. But when K is positive, trimodal behavior is the rule. Thus,
it's reasonable to propose that K be regarded as a measure of the extent
to which relations and rank in the society are determined by kinship
(i.e., the relations are the result of birth or marriage). In other words,
positive values of K mean that kinship is very important in determining
societal rank, while negative values mean antinepotism is the rule. So
what makes a society a chiefdom rather than a state is the extent to
which relations within the society are still determined by kinship.

The bias factor T determines mathematically which of the two
“wings” of the butterfly is the more dominant. In one case, the society
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FIGURE 2,17, FORMATION OF CHIEFDOMS AS SEEN BY THE BUTTERFLY CATASTROPHE

is more statist-oriented, while if the other wing is dominant there is a
more'pronounced tendency toward societal fragmentation. So one
plausible way to interpret T is as the intensity of the exterr;al threat
t9 the system. If the threat is low, fragmentation will dominate; if it’s
high, the society will tend to organize itself around a central autl;ority

In philosophy, the term metaphbysics refers to the study of questi;s
that transcend the merely natural, issues such as whether every event
has a cause and what things are genuinely real. With our last exampl

on the collapse of early state societies, we have clearly moved frgrfl
the realm of the physical to the metaphysical insofar as our use of
:atil}s;trophe theory goes. And it is exactly this transition that ruffles the
eathers of those critics of how the theory is sometimes applied. As a
prelude to the consideration of their arguments, let’s stand baci{ d
take a bird’s-eye view of the three examples in ,this section "

h' ‘Bem{mg beams—‘—flere well-tested principles and laws of classical
physics give an explicit mathematical expression for how the beam
behaves. By applying the methodology of catastrophe theory to thi

mathe.matical representation, we were able to determine directl I:hS
canonical geometry that must govern the beam’s behavior. Irxy thiz
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physical way of employing catastrophe theory, the key element is the
fact that there is a known mathematical formula describing the
underlying process. Catastrophe theory is then used as a tool by which
to squeeze additional information out of this already known and tested
representation.

» Developmental biology—We might term the passage from physics
to biology as the transition from physics to “semi-physics.” Die-hard
reductionists still argue that biology is just a special case of physics
since, after all, biological organisms are just particular types of physical
objects. But a good case can be made for the reality of the situation
being just the opposite: physics as a special case of biology. The
reasons supporting this bold claim are too long to enter into here,
revolving about the additional features of organisms—replication and
self-repair—not found in the systems of physics. Let me refer the
interested reader to the items cited in the To Dig Deeper section for
the full story. As far as applying catastrophe theory is concerned, the
centra} ingredient is that in biology we generally do not have the
luxury of an explicit mathematical representation for the process under
investigation, unlike most situations in physics. But this does not mean
that nothing is known.

For example, in studying blood flow through the vascular system,
we have a very complete set of equations describing the blood
movement, the well-known Navier-Stokes equations of hydrodynamic
flow. In this case we can use catastrophe theory in the physical way,
exactly as it was used for the case of the bending beam. In fact, for
such situations it’s difficult to draw a meaningful distinction between
biology and physics, at least insofar as the formal modeling activity is
concerned. But when it comes to a problem like morphogenesis,
matters take a far different turn.

In our example above, we saw that there was a mathematical
formalism—Turing’s reaction-diffusion equations—goverming the be-
havior of a hypothetical morphogen postulated to account for the
developmental pattern of a group of cells. The problem here is that,
first of all, no such morphogen has ever been indisputably identified
in the lab. So it’s hard to argue that Turing’s equations are anything

like well tested by experiment. Moreover, even if there were a physical
quantity we could confidently label a morphogen, the gap in the causal
chain between any such morphogen and actual cellular behavior is
enormous. There is no mathematical way known today to bridge this
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SCienthen it comes to applying catastrophe theory in the biological
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Con]:lgtt's, the anal'ytxc structure of that relationship satisfies the technical
oon 110r1i1 .r‘equ1red by the Classification Theorem. In broad terms
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> : . Finally,
in ftrs'esuﬁpt;)]se that the coordinate systems used to measure both tlee
puts and the outputs happen to coincide with the coordinate systems
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that lead to the standard catastrophe geometry governing a system
with the number of inputs and outputs we have chosen: If not, we
have to make a change of variables to transform the physically base'd
coordinates in which we express the observations into the mthemalix-
cally based variables that generate the standard geometries. The
mathematics of catastrophe theory assures us that such a transforma-
i i but gives no help in finding it. .
tlorl\llcf)::vlsfic:s yoir attention on the italicized words in the prece;l);ng
paragraph. Each one of these words represenFs an out-of-the- uei
assumption that we must be ready to swallow if we.want to appea
to the Classification Theorem to single out a part.ncula'r geometry
describing our problem. It’s at this point tb?t physics gives wl';ly to
metaphysics. It's also at this point that the critics of Catas.trophe' t éory
come crawling out from under their rocks to level th.eu' multifarious
attacks on what they see as the spurious, if not downrlgk}t dangerolllls,
applications claimed by the theory’s proppnents. So without furc. er
ado, let’s turn the podium over to these critics and answer the quest}on
raised at the beginning of the chapter: how can a merfe ma}thematlcai
theory of discontinuous processes lead to the kind of bltt?l.' m?tellectua
dispute that’s usually found only in the arts and humanities?

THE THEATER OF THE ABSURD

Happily, the controversy over catastrophe theor}" is a lot easier to
understand than the theory itself, once we recognize that the contrlc:-
versy really separates into four quite distinct argu.ments about: (1) the
theory’s mathematical and philosophical foundatlons,'(Z) the ass'umlp-
tions necessary to apply the theory, (3) the details of particular
applications, and (4) the scientific attitudes, styles and even persog—
alities of the theory’s supporters and opponents. We have.alrea y
considered the second point within the context of the physical and
metaphysical ways of catastrophe theory, so 'tf.le balance of o;:r
discussion in this section will focus on the remaining elements of the
del;;‘:: - principal points raised against catastrop.he. theory from ;1
mathematical point of view are that the theory is 'mherently local,
telling us only about what's happening in a srr'lall region of the outpu;
space, and that it applies only to a very restricted class of dynamica
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processes. Specifically, it applies only to dynamical systems having
fixed points as their attractors.

The problem with locality is that the Classification Theorem doesn’t
tell us what the system’s behavior is like far from a critical point.
Furthermore, since the standard geometries like the cusp and butterfly
admit stretching and bending of both inputs and outputs without
changing the topological character of the critical points, it takes a
certain act of faith to associate a mathematical jump in the space of
attractors with an observable discontinuity in some real-world process.
The difficulty is that the mathematical jump may be too small to be
seen—or even regarded—as a jump in the real-world process the
catastrophe is supposed to represent. Developing the tools needed to
create a global theory of catastrophes that would justify this act of
faith is a big conceptual and mathematical problem, one going far
beyond the resolution of mere technical obstacles in the existing
theory.

As for the restriction to systems with fixed-point attractors, it turns
out there are many natural processes whose long-run behavior is not
the fixed point of a dynamical process. Hence, such systems cannot
be governed by the type of dynamics needed to apply elementary
catastrophe theory. For instance, many biological processes like the
human heartbeat and the flowering of plants involve steady-state
behaviors that are periodic. And as we will see in the next chapter,
an even larger class of systems seem to settle into attractors that are
“strange.” In both cases, catastrophe analysis is inapplicable unless
the problem has some kind of special structure allowing us to reduce
the behavior of interest to the right kind of dynamic.

Despite these incontrovertible mathematical facts, it is still the case
that many interesting processes do fall within the purview of elemen-
tary catastrophe theory. Furthermore, it's often possible to closely
approximate many systems of the “wrong type” by those having fixed
points as attractors. But these mathematical and philosophical diffi-
culties are just the antipasto to the real catastrophe theory controversy.
The main course revolves around the way the theory has been applied
and the perceived motivations of its main practitioners, especially
Christopher Zeeman.

In our discussion of societal collapse, we saw that a number of
assumptions have to be accepted in order to use catastrophe theory
in situations where we do not know the explicit mathematical form
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of the underlying dynamics. We termed this the metaphysical way of
catastrophe theory. And it’s exactly this transition from physics to
metaphysics that constitutes one of the main lines of attack against
the application of catastrophe theory. In the words of Hector Sussman
and Raphael Zahler, two of the leading anticatastrophists, “catastrophe
theory is one of many attempts that have been made to deduce the
world by thought alone . . . an appealing dream for mathematicians,
but a dream that cannot come true.” This sentiment is echoed by
dynamical system theorist John Guckenheimer, who wrote in a review
of Thom’s book for the Bulletin of the American Mathemditical Society,
“they [Thom and Zeeman] show a real reluctance to get their hands
dirty with the scientific details of the applications.” But Guckenheimer
concluded his review by saying that Thom might even be too cautious
about the impact of his theory on biology.

There are several aspects to these reservations about the applica-
tions of catastrophe theory, some centering on Thom's stated assump-
tion that a good model for a physical process must be structurally
stable, while others zero in on the metaphysical assumptions that the
system has only fixed points as its attractors and that its behavior
depends on only a small number of input parameters. Still another
line of attack has been the claim that many of the published applica-
tions of catastrophe theory are just plain wrong, in the sense that they
give predictions that are flatly contradicted by observational evidence.

Concerning the structural stability objection, John Guckenheimer
has noted that “there are very reasonable models for occurrences in
the real world that simply are not structurally stable, or even qualita-
tively predictable.” In other words, not every good (i.e., useful) model
need necessarily be structurally stable. We will see evidence in support
of this claim in the next chapter when we look at processes governed
by chaotic dynamics. Such systems are often manifestly unstable, small
shifts in the system parameters giving rise to transitions from simple
steady-state motions like laminar flow in a fluid to complicated,
inherently unpredictable behavior like fully developed turbulence.
The theory of elementary catastrophes as it currently exists cannot
account for these kinds of behaviors, and it remains an open question
as to whether a suitable theory of “generalized” catastrophes can be
developed to embrace such unstable processes.

As for catastrophe-theoretic descriptions giving rise to bad models,
one of the most flagrant examples of this sort is Zeeman’s cusp model

THE CATASTROPHIC 83

of the boom-and-bust behavior of prices on speculative markets. Here
it suffices just to note that the model implies that in a purely speCL;lative
market involving no investors who trade on the basis of economic
fundamentals, there can never be a crash or a boom. If the only
information investors use to make decisions is past price data, then
there can never be a discontinuous change in prices. On the s{lrface
such a conclusion seems patent nonsense. Real markets always
experience booms and busts, and any model implying otherwise must
be taken with several shakers full of salt. Other objections along similar
lines have been leveled at many of Zeeman's models of things like
prison riots and the aggressive behavior of animals. The degree to
which these complaints hold water will ultimately turn on whether or
n9t these preliminary models can be revised to remove the offending
pieces without throwing out the catastrophe-theoretic baby with the
bathwater. But judging from the lavish praise and the howls of outrage
about catastrophe theory quoted at the beginning of this chapter, it
appears that the most viscerally interesting aspect of the COIItI'OVCI"Sy

is not mathematical at all, but psychosocial. So let’ i
, . et’s ¢
human side of the debate. oneider the

l-‘"ubh'c images notwithstanding, one should never forget that science
like literature, music, dance and all the other arts, is 2 human activity’
?n fact, there’s ample evidence to suggest that scientists are far frorr;
immune to the emotional outbursts and petty jealousies that are
'endemic and taken for granted in these more humanistic areas of
intellectual pursuit. Many years of empirical evidence attest to the fact
that mathematicians take a backseat to no one when it comes to
hypersensitivity to the folkways and mores of their profession, espe-
c1al'ly when one of their number receives attention beyoryld the
cloistered walls of academia. The catastrophe theory controversy is
one of the best examples I can think of in support of this thesis ’

Fn its issue of January 19, 1976, Newsweek magazine ran a full-i)age
article on catastrophe theory, the first story on mathematics they had
published in over seven years. In this article the theory is described

in terms rosy enough to emit heat, suggesting that Thom’s ideas about

;ilsclc?ntmuous phenomena represent the most significant advance in
hgp ied mathematics since Newton’s invention of the calculus. As we
ve come to expect whenever a laborer in the vineyards of mathe-
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matics receives even a smidgen of attention beyond the bounds of
what the mathematical community feels is right and proper, the
naysayers came out in force. In this case, the charge was led by the
aforementioned Sussman and Zahler, aided and abetted by a number
of prominent colleagues. In a 1977 article by Gina Kolata in Science
magazine titled “The Emperor Has No Clothes,” the battle was joined
in eamnest, with several quotes on the demerits of catastrophe theory
being uttered by prominent mathematicians like Stephen Smale of
Berkeley and Joseph Keller of Stanford. In Kolata’s notorious article,
Zeeman is described as a “publicist,” and Thom is rightly quoted, but
completely out of context, to the effect that in a world in which all
concepts could be formulated mathematically, only the mathematician
would have a right to be intelligent. What followed was a long bout
of correspondence, pro and con, on the issues raised in the article,
little of which had any bearing on anything other than the attention
that Thom and Zeeman were receiving from the world outside science
and, especially, outside mathematics. ’

In trying to summarize and evaluate the pluses and minuses of the
many threads in this debate, it’s difficult for an uninvolved bystander
not to wonder, Why all the fuss? As biologist Robert Rosen wisely
counseled, “If an individual scientist finds such concepts uncongenial,
Jet him not use them. There is no reason why he should take their
existence as a personal affront.” This is my view as well. Catastrophe
theory will probably survive these broadsides, in much the same way
and for much the same reasons that Darwin’s theory of natural
selection survived the bitter attacks mounted against it. Both theories
are essentially explanatory rather than predictive, thereby failing to
provide those who hunger for precise quantitative predictions with
the kind of numerology that has come to be synonymous with science.
But as René Thom so poignantly points out, “At a time when so many
scholars in the world are calculating, is it not desirable that some, who
can, dream?”

THREE

THE CHAOTIC

Intuition: Deterministic
rules of bebavior give rise to
completely predictable events.

Chance is perbaps the pseudonym of God when He did not want
to sign.

—ANATOLE FRANCE

The w?rld is either the efffect of cause or of chance. If the latter
. . . it is a regular and beautiful structure.
—MARCUS AURELIUS

Everything existing in the Universe is the fruit of chance and
necessity.

—DEMOCRITOS

EXPECTING THE UNEXPECTED

The University of Bologna is reputed to be the oldest university in the
Western world, having been founded sometime in the 11th centu

And by the latter part of the Middle Ages, the science faculty of tlrlz’s
venerable institution had a chair in astrology. To the modern eye this

85



86 ’ COMPLEXIFICATION

fact seems incongruous, to say the least, as there’s probably not
a single facet of the occult that the modern scientist condemns
more vociferously than astrology. An obvious question then is why
astrology was regarded as the height of scientific respectability
a few centuries ago, but is now thought of as the archetypical
pseudoscience.

Some years ago, 1 ran across a newspaper filler piece in which an
astrologer claimed that astrology was just as scientific as physics or
biology, being simply a theory of the connectedness of events in
time. In reading this article, I began to wonder how one could simul-
taneously swear allegiance to both the tenets of classical astrology
and the precepts of modern science.

The key to reconciling these apparently conflicting visions of real-
ity seems to involve acceptance of the following hypotheses: (1)
there are natural forces that really do influence human destinies, and
(2) the nature of these forces cannot be accounted for by today’s sci-
ence. Under these hypotheses, the traditional view of the planets as
being the actual source of these mysterious forces affecting people’s
lives is completely mistaken. The planets exert no such influences.
Rather they serve only as a convenient way to measure these funda-
mental forces unknown to modern science. And it is these deeper,
more basic forces that actually do cause people to get rich, get sick,
or get lucky.

A good analogy here is electricity flowing through a wire. By
attaching a voltmeter to the wire, you can measure the flow of current,
which will be displayed as the position of the voltmeter’s needle on
a graduated scale. But that needle movement is not the force itself;
is only an indicator of a force—namely, the electri¢al potential
existing in the wire. So it is with the planets. Their positions are only
a convenient way of measuring the vital “life force” that astrologers
believe influences every one of us from birth to death. But if the
planets don’t directly influence our lives, then why do we use them

as the measuring device? Why not use, say, the growth patterns and
colors of the flowers in Central Park or the configuration of clouds
outside your window?

This theory suggests that any of these other natural phenomena
can in fact be used as an indicator of the crucial life forces so
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beloved by astrologers. We customarily use planetary positions only
because these positions can be accurately calculated years, even
decades or more, into the future. Thus, they serve as a reliabl’e indi-
cator of what the mysterious astrological forces will be doing and
how they will be acting for as far into the future as we care to com-
pute the planetary orbits. So the bottom line turns out to be that the
pqpular image of astrology is all wrong. There is no special relation-
ship between the positions of the planets and the puny affairs of us
?mmans. Instead, the planets come into play simply because it's eas-
1fer to calculate their orbits with greater precision and over longer
time horizons than it is to easily and reliably predict the long-term
future of any other natural process.

The point of this little story is to underscore the fact that the laws
governing planetary motion are about the closest thing the human
race has yet discovered to a sure thing. Measure the current positions
of Mercury, Saturn, Venus or Mars, plug these measurements into
I\.Iewton’s laws of motion and out come extremely accurate predic-
tions of where the planet will be tomorrow, next month or next cen-
tury. This is the example par excellence of what we mean when we
talk about a system’s behavior being “determined.”

.In the 18th century, following in the footsteps of Newton, Pierre-
Simon de Laplace, physicist, mathematician and one of the f;)unders
of the theory of probability, made a bold assertion that is about as

good a description as can be given of the perceived relationship
between determinism and predictability:

Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective
positions of the beings which compose it. .. nothing would be
uncertain, and the future as the past would be present to its eyes.

But Laplace was wrong. Being deterministic and being predictable
are just not the same thing at all.

A system is called deterministic when its future states are completel
f‘lxed by its current state and its rule of dynamical motion, So fo}rl
instance, if we know the current positions and velocities of ,the ’nine
planets, then the laws of celestial mechancis fix uniquely the position
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and velocity of each planet for all future times—in principle, anyway.
The simple Circle-10 system we saw in the last chapter is another good
example of a deterministic system: once we specify the starting point
on the circle, the itinerary is fixed thereafter by the rule telling us how
to move from one point on the circle to the next. But the Circle-10
system also underscores the vitally important fact that deterministic
behavior does not necessarily imply complete predictability. It's crucial
for our understanding of chaotic phenomena to know why this should
be the case. Basically, a chaotic system generates behavior giving the
appearance of complete randomness by means of a purely determi-
nistic rule. For a truly random process, on the other hand, there is no
such fixed, deterministic rule. Rather, such a process arises from an
inherently probabilistic rule. Our principal goal in this chapter is to
see how to distinguish between these two cases. The first is what
scientists call chaotic, while the second is what laymen have in mind
when they use the very same term. Scientifically speaking, chaos is
only the appearance of randomness, not the real thing.

RECIPES FOR RANDOMNESS

Judging by the number of cookbooks on display at my local bookstore,
cooking must be about the most universal of human activities, rivaled
only by making money, love, war or trouble. And what does every
one of these cookbooks consist of? Basically, these books are collec-
tions of rules telling us how to create just about anything from aardvark
stew to zucchini bread. For example, consider a recipe for making
something nice and fattening like bread pudding. The recipe begins
by specifying all the ingredients you must have on hand in order to
make this delicacy. These items include things like milk, eggs, butter,
salt and, of course, lots of dried bread. Speaking in computer jargon,
these ingredients constitute the input to the bread-pudding system.
The recipe then sets out the sequence of steps you must follow to
actually make the pudding. Roughly speaking, each of these steps tells
you to do something with either the raw ingredients or an intermediate
product, assuring that if you don’t make any mistakes along the way,
the final step will take you to the object of your desire. Again in
computer jargon, we can call the steps of the recipe a program for

bread pudding.
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So we see that there is no fundamental difference between a
cor.nputer program and a cooking recipe, other than the fact that the
recipe tells us how to manipulate physical matter while the computer
program tells us how to manipulate information. Following the same
line of reasoning, it should be clear that a computer program and a
dynamical system are also abstractly equivalent objects. To use the
kmd.of obfuscation that mathematicians revere, they are isomorphic
The initial state of the dynamical system corresponds to the input tc;
the program, while the dynamical rule of motion (the vector field)
corresl?onds to the instructions that make up the program. And, in
fact, with these matchups in hand, we can consider a cooking rec,ipe
to pe a particular kind of dynamical system. Let’s pursue this isomor-
phxsm. just a litde bit further, both in its own right and as a way of
zﬁzzl;fng up on our original question about the nature and origin of

' Suppose you're making bread pudding and inadvertently put in a
pinch too much salt. Chances are this departure from “design specs”
won't do much harm to the final result, and you'll end up with
something pretty close to a bona fide bread pudding. In the language
of dynarnical systems, ‘the bread-pudding system is stable: a small
change in the input to the system causes the output to wind up in an
attractor close to that representing the perfect pudding. Of course, if

- you dump in a whole shaker full of salt the end result will bear little

resemblance to anything we'd even charitably want to call bread
pudding. This is what we mean when we say that the bread-puddin

system is locally stable. Small changes to the input and/or to thi
processing rules result in small changes in the final product. But all

bets are 9ff if we make large changes. And this is not a situation
confined just to the kitchen.

The Butterfly Effect

In thf'! early 1960s, Ed Lorenz, a meteorologist from MIT, was experi-
menting with some computational models of the atmosp,here. Durin

the course of one of his computer experiments, he discovered whagt
has now come to be called the butterfly effect. This terminology comes
.from .the fact that in weather models like Lorenz’s, a butterfly flapping
its wings today in Brazil can jiggle the atmosphere so as to cause a
snowstorm in Alaska tomorrow. Put more technically, the purely
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deterministic laws governing weather formation are unstable in the
worst possible way. As a result, they allow minuscule changes at one
location to percolate through the system so as to bring about major
effects somewhere else.

So we have the following puzzle: The butterfly effect is a small
change, yet it leads to a very large change in the final result. Unlike
the bread-pudding system, the weather system is unstable—even
locally. Why? What's the difference between the dynamics of the
atmosphere and the dynamics of bread pudding? To see why a
butterfly beating its wings in the Amazon is fundamentally different
from putting a pinch too much salt into the bread pudding, let’s return
for 2 moment to the Circle-10 system.

For the Circle-10 system, two starting points closer together than
we could ever hope to measure turn out to follow itineraries that end
up very far apart. This is due to what we earlier termed sensitivity to
initial conditions, a property that the Circle-10 dynamics has in spades.
The root cause of this behavior is that when we multiply by 10 in the
Circle-10 rule, we are “stretching” the circle by a factor of ten. As a
result, nearby starting points get pushed far apart. But since the circle
is a bounded region, we can't stretch it everywhere and still remain
on the circle. So after the local stretching, we have to fold the
stretched-out circle back on itself in order to make it fit on top of the
original circle. Expressed algebraically, this folding operation takes
place in the Circle-10 rule when we drop the number appearing on
the left-hand side of the decimal point after performing the multipli-
cation by 10. Figure 3.1 gives a stylized view of the overall stretching-
and-folding process.

FIGURE 3.1. STRETCHING AND FOLDING
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The stretching and folding operations are complementary, in the
sense that the first separates points while the second tries té) bring
them back together again—but with new neighbors. By way of
contrast with both the Circle-10 and the weather dynamics, local
stretching is not the dominant effect in the bread-pudding reci;;e (e
its dynamics). In fact, there’s no stretching at all in the bread—puddi.né
rule. As a result, the sequence of states leading from the proper initial
state .(the correct ingredients) to the final pudding (the attractor) each
remain close to the states on a path starting at a nearby initial state
(e.g., one having a pinch too much salt). So the two itineraries each
end up in the same or a nearby attractor, one that we’re prepared to
honor with the label bread pudding.

As a small historical aside, this idea of stretching and folding as the
cl.laracteristic essence of chaotic processes is reputed to have been
discovered in the mid 1970s by German theoretical chemist Otto
R{)ssler of the University of Tiibingen. As the story goes, one day
Roéssler was watching a saltwater taffy-pulling machine in Salt Lake
.City (where else?). What he saw through the shop window is shown
in Figure 3.2. Apparently the machine was engaged in pulling a type
of taffy containing raisins. While watching this process, Rossler

FIGURE 3.2. A SALTWATER TAFFY-PULLING MACHINE
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wondered about the paths followed by two raisins initially thro'wn
into the batch of taffy at about the same location. His contemplz.mon
of this question led to a scientific breakthrough of maj.or propomops,
which just goes to show that asking a childishly sun?le quest.mn
doesn’t always lead to a childishly simple answer—if it's the right
question! ‘

The preceding arguments show that for the bread-pudding system
there is no sensitivity to initial conditions. Thus we can feel confident
that a small change in the ingredients won’t have much effect on the
final pudding. It's a good thing, too, since it dogsn’t ta.ke much
imagination to see what a mess we’d be in if cooking recipes were
chaotically unstable like the Circle-10 system.

Sensitivity and Stability

The distinction between sensitivity and insensitivity is illus'trated in
Figure 3.3, where the first part of the figure shows the origin of the
kind of sensitivity seen in the Circle-10 system. Here we see how it's
possible to make the points of the real number line match those of a
circle in a one-to-one manner. But note how the points far out on
either end of the line (the really big numbers) all get compressed into
a small region near the north pole. Thus, points that are close toget.her
on the circle may end up many orders of magnitude apart on the lm.e.
The second half of the figure represents the sort of stability we see in
cooking recipes, in which nearby starting points remain pr.ettyf close
together throughout the history of the process, ultimately winding up
in the same attractor.

)

(a) ®

Fiount 3.3. (A) SENSITVITY TO INIAL CONDITIONS; {B) INSENSTTIVITY TO INTIAL CONDITIONS
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Interesting and important as stable systems are for everyday life
with its appeals to common sense and folksy rules of thumb, the
majority of events we read about in the daily newspaper—Iotteries,
sporting events, stock price movements, the outbreak of wars—are
the end result of an unstable process. When it comes to the kinds of
things that really shake people up, it’s butterflies that count, not bread
pudding. So let’s look a bit more closely at this kind of deterministic
randomness in order to hammer home the point that chaos and
common sense go together like oil and water.

Back in the early days of computers, one of the more popular
methods for generating a sequence of random numbers was to employ
the following scheme:

1. Choose a starting number between 0 and 1.

2. Multiply the starting number by 4 (“stretch” it).

3. Subtract 4 times the square of the starting number from the
quantity obtained in step 2 (“fold” the interval between 0 and 1
back on itself in order to keep the final result in the same range).

Given a starting number between 0 and 1, we can use this proce-

_dure—often termed the logistic rule (see Chapter One)—to generate

a sequence of numbers that to all appearances is completely random.
For example, in such a sequence each of the ten digits 0 through 9
appears with equal frequency and the statistical correlation between
groups of digits is zero. Note, however, that the members of this
sequence are specified in a completely deterministic way by the
starting number. So the sequence is certainly not random in the
everyday sense of being unpredictable; once we know the starting
number and the rule for calculating an element of the sequence from
its predecessor, we can predict with complete confidence what every
element in the sequence will be—providing we can pin down the
starting number exactly and carry out the computational steps without
error of any kind. Nevertheless, since such a sequence satisfies all the
traditional statistical tests for randomness, it is called a pseudorandom

sequence.

Insect Population Dynamics

In 1976, the prestigious British scientific weekly Nature published an
article by Robert May, a mathematical ecologist now at Oxford
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University, that served as one of the sparks touching off the explosion
of current interest in chaotic dynamics. And what was the theoretical
centerpiece of May’s pathbreaking article? None other than a simple
formula used to represent fluctuations in the population level of an
insect colony, a setting in which the rule is generally labeled the logistic
equation. In fact, May’s logistic equation for insect population fluc-
tuations turns out to be essentially the same rule as that sketched
above for generating pseudorandom numbers.

Let’s look at the logistic rule from an ecologist’s point of view. First,
we denote the insect population level at generation ¢ by the symbol
x,. Assuming that when there is no competition for resources each
adult produces four offspring, the population in the next generation
will then be 4 x x,. Now we scale the population so that levels beyond
1 signify a population explosion, while those less than 0 denote
extinction. Then the quantity 1 — X, represents a feedback on birth
rates from effects due to overcrowding (i.e., competition for scarce
resources). When we put the birth and overcrowding effects together
into a single expression, what pops out is the formula for randomness
we have called the logistic equation.

Figure 3.4(a) shows a hypothetical insect population generated in
a computer experiment using the logistic rule, while part (b) of the
figure shows actual data on the daily population fluctuation of
blowflies obtained by A. J. Nicolson in a classic experiment carried
out some decades ago. Even a casual glance at the figure suggests a
strong connection between the mathematical randomness shown by
the logistic law of growth and the unpredictable ups and downs of
real insect populations.

Watching nature red in tooth and claw is certainly one way to see
counterintuitive, chaotic behavior rear its ugly head. Looking at the
clouds passing by outside your window is another.

FIGURE 3.4. (A} POPULATION HISTORY FROM COMPUTER MODEL; (B) BLOWFLY POPULATION DATA
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Atmospberic Dynamics

Man.y of the world’s weather patterns are dictated by the position of
the jet stream, at least in the mid-latitude regions where most of us
work and play. Figure 3.5 displays the position of the jet stream over
Europe and the mid-Atlantic in two quite different weather regimes

The first results in somewhat unsettled weather over the UK. while;
the second may lead to sunny, warm weather in the summer an:i gray

possibly very cold weather in winter. To accurately predict these types’
of weather regimes is one of the principal tasks of the meteorologist.

In an attempt to model the real atmosphere, which involves
something on the order of a million variables, Edward Lorenz devel-
F)ped a “toy” atmosphere represented by just three quantities: (1) the
intensity of air movement, (2) the temperature difference between
ascending and descending air currents, and (3) the temperature
gradient profile between the top and bottom of the atmosphere. Let’s
label these three variables x, y and z, respectively. So in this ser.up if
x and y are both positive or both negative it means that warm air’ is
rising and cold air is falling. Moreover, a positive value of z means
that the greatest temperature gradient occurs near the boundaries of
the atmosphere.

In Lorenz’s model a weather state at a given moment in time is
represented by a point in the three-dimensional abstract space whose
points are determined by the variables x, y and z. Thus, the develop-
ment of the weather over time can be thought of as the ,tracing out of
a curve in this space. The set of all possible weather states forms what's
k'nown as the Lorenz attractor of the system. Its shape, shown in
Figure 3.6, accounts for why Lorenz’s work on measuremer;t sensitivity
and weather forecasting was originally labeled the burterfly effect.
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FIGURE 3.6. THELORENZ ATTRACTOR

The first important point to note about the Lorenz attractor is that
it has two separate “butterfly wings,” which are abstract repre-
sentations of two quite different weather regimes. For the sake of
argument, let’s assume that the left-hand wing repre'sents the unsettled
pattern of Figure 3.5(a), while the right-hand wing s.tands for. the
pattern of fair weather in summer and bad weather in winter depicted
in Figure 3.5(b).

Now consider two points that are very close to each other on the
left-hand wing. These points represent nearly identical weather st.a.tes
in the regime characterized by unsettled conditions over the British
Isles. Let’s try to follow what happens to these instantaneous st‘ates'of
the weather as time unfolds. Figure 3.7 shows three possible histories
of nearby weather states: (a) both trajectories remain on the left-hand
wing, () both trajectories move toward the right-hand wing or (c) one
trajectory stays on the left-hand wing, while the other moves toward
the right-hand pattern. It's important to note here that each of the
three cases (2) through () involves initial weather states that are close
to each other, but not the same two initial states in each case. The
distance between the states is the same, but the initial states themsel\fes
differ in each case. It is this fact, coupled with the chaotic behavior
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oo ——————

(a) (b) ©

FIGURE 3.7. POSSIBLE HISTORIES OF TWO NEARBY WEATHER STATES

of the Lorenz dynamics, that gives rise to the different behaviors of
the three resulting weather systems.

The foregoing situation shows that while in all three cases the two
weather states diverge, thereby implying rather different forecasts of
the instantaneous weather, it may still be possible to predict the overall
weather regime quite far into the future. It all depends on whether
we are in situations (a) and (b) or in situation (c). In the first case, the
two initial weather states evolve so as to remain on the same branch
of the attractor (the same wing of the butterfly). So they represent the
same weather regime. But in case (c), the nearby initial states end up
in entirely different regimes. Thus we conclude that although the
atmosphere itself is chaotic, it may still be possible to predict overall
weather patterns from certain initial states.

A natural impulse at this point is to ask, If we are observing the
output of a particular dynamical process, how can we tell solely on
the basis of these observations whether or not the system is chaotic?
What kinds of tests can we apply to decide whether the system’s
attractor is really “strange,” or if it just looks that way in the short term
and will eventually settle down to one of the tamer long-run patterns
like a fixed point or periodic orbit? Alternatively, is the system’s
random-looking behavior due to an underlying deterministic rule like
the logistic equation, or are we observing a truly random process being
generated by an intrinsically probabilistic mechanism?
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STATISTICALLY SPEAKING

When asked how he came to discover relativity theory, Einstein replied
that he thought about how things would look if he happened to be
riding along on a beam of light. What he was saying is that sometimes
things look different if you're inside the system than if you look at
what's happening from the outside. This is a good example of what
in Chapter One we called “jumping out of the system.” And s0 it is
too when it comes to chaotic processes. We have an entirely different
set of tests for identifying the presence or absence of chaos if we're
given the vector field of the system (the insider’s view) than if all we
have to go on is the outsider’s record of only the system’s observed
behavior (i.e., its output). To start with, let’s take our cue from Einstein
and examine the question from the insider’s perspective.

o Period-Three theorem—To fix ideas, suppose we have a system
consisting of a set of entities—insects, people, molecules—whose
population level at generation ? is represented by the number x;.
Furthermore, let the rule specifying how the population grows as a
function of its current level be given by the vector field f. So the
population at the next generation i Xr+1 = Sf(xp. With an insider’s
knowledge of the rule f governing the population growth, we can
compute the entire population history as soon as we are given the
initial level x,. In 1973, Tien-Yien Li and James Yorke discovered the
following remarkable fact about this kind of system: if there is any
sequence of three successive generations in which the population
increases for two successive periods and then retums to (or goes
below) its original level, the system is chaotic. In more colorful
language, this result is usually expressed by the title of the famous
Li-Yorke paper, “Period Three Implies Chaos.” This result gives us
very useful information about one-dimensional systems (i.e., those
whose states can be represented by a single real number). Unfortu-
nately, the theorem fails for higher-dimensional systems where more
delicate tests are called for.

We've already seen that chaos is an ongoing struggle between
stretching and folding. This intuitive picture can be “souped up” to
yield a test for chaos in higher dimensions. Here's a baker’s-eye view
of how to do this.
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* Lyapunov exponent—Think of a baker at work rolling out a ball
of pastry dough. The baker takes some dough, works it into a thin
sheet with a rolling pin, folds the dough over itself a time or two and
then rolls it out again. To make this process mathematically precise
let's assume that at each stage the thickness of the sheet of dough is:
halved and its length is doubled, the width remaining the same. And
in§tead of folding the sheet, we’ll assume that the sheet is cut in. half,
with one of the half-sheets (always the same one) placed atop thej
ot'her. After this cutting and placing, the process then begins again
with a sheet the same size as before. The first two stages of this process
are showp in fj‘igure 3.8, where the face of a cat is placed on the sheet
g)o ::ke it easier to envision how the rolling, cutting and placing are
Now suppose that instead of a cat’s face we place two dots, 4 and B
on the pastry sheet. The diagram in Figure 3.9 shows two api)lications’
of Fhe baker’s transformation in this case. Note in the figure how the
points A and B have separated during the course of successive

—

FIGURE 3.8. ROLUNG OUT A SHEET OF PASTRY DOUGH
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FIGURE 3.9. THE BAKER'S TRANSFORMATION

applications of the transformation. This is a geometric .view Qf 'what
we called earlier sensitivity to initial conditions. Two points .ongmall,y
close together get pulled apart by the action of the chac?tlc t‘)aker's
transformation. In this pastry situation, there are two directions in
which the points can move: up/down and left/right. So there are two
rates of separation, one in the vertical direction, the other in the
horizontal. These rates are characterized by two numbers, called the
Lyapunov exponents for the process. And if ei.ther of th<?s§ .numb'ers
is positive, indicating a positive rate of separation of the 1.mt1a! points
in a given direction, we say the system is chao.tlc. The s:t}latlorl' can
easily be extended to the case of a system having an n-dlmeflsmnal
state space, in which case there are n such numbers measuring the
degree of separation of nearby initial points in each of the n directions
in the space. Since there is one such Lyapunov exponent for.e:a‘ch
degree of freedom of the system, we will have the kind of sensitivity
to initial conditions indicative of chaos if even one of these numbers
is greater than zero. ' .

It's clearly asking a lot to demand that the ennrse rule of mgnon for
the system be given. In fact, for the vast majority of physical .and
human systems, all we have at our disposal is a set of ol‘)servatlons
(i.e., measurements) about how the system has behaved in Fhe Past.
In such cases the very goal to which theoretical science asplre’:s is to
produce an explicit characterization of the rule generating whz}t s be.en
seen (i.e., to find a dynamical rule that could plausibly have given rise
to the observations). Obviously, it would be of great interest to know
if the kind of rule we're looking for should have a strange attra;tor or
not. This situation leads us to take the external, or outsider’s, view of
the system, in which we seek tests for chaos based solely upon the
measured data. Here is one such test involving only how the system
behaves when it’s actually on the attractor.

o Correlation dimension—In a chaotic process, the trajectory from
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almost every starting point wanders all over the state space. But not
all parts of the state space are created equal; some regions are visited
more frequently than others. This fact provides the basis for a chaos
test based solely on a system’s observed behavior.

Consider for a moment the classical attractors, a fixed point and a
limit cycle. Regardless of the dimension of the overall state space, the
fixed point has dimension 0, while the limit cycle, being a simple
closed curve, has dimension 1. These numbers are the geometric
dimension of the attractor. At the other end of the scale is the situation
in which the system is truly random. In this case, every point of the
state space is eventually visited, leading to the attractor’s having the
same geometric dimension as the state space itself. Chaotic systems
with their strange attractors lie somewhere in between. For such
systems, the attractor is clearly not such a primitive geometrical object
as a point or a simple curve. Yet it's still a proper subset of the overall
set of states.

Suppose we look at a trajectory that’s been moving on its attractor
for some time. Let's sample a set of points from this trajectory and
compute the statistical correlation between these sample values. This
calculation results in a number called the correlation dimension of the
system, a number that measures the degree to which the system’s
attractor “fills up” the space of states. Note carefully that this quantity
does not usually equal the geometric dimension of the attractor. This
is because the correlation dimension weights the points on the
attractor according to how frequently they are visited. The geometric
dimension, on the other hand, attaches the same weight to each point
of the attractor regardless of how often it’s visited. A telltale sign of
chaos is when the correlation dimension turns out to have a noninteger
value much greater than 1.

To illustrate the general idea, suppose we take the data from our
logistic map and plot it in the following way. First take the values
obtained at times ¢ = 0 and # = 1. Call these values x, and x;, and think
of them as the coordinates of a single point in the two-dimensional

%~y plane. So the x coordinate of this point is the number x,, while

the point’s y coordinate is x,. Now do the same thing for the pair of
values (xy, x2), which are the observed outputs from the logistic rule

‘at times ¢ = 1 and ¢ = 2, respectively. Continuing in this fashion, we
- obtain a scattering of points in the x-y plane. Figure 3.10 shows the
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FIGURE 3.10. (A} ARANDOM SCATTER; (B) THE LOGISTIC PARABOLA

igi i from a truly random
ibilities. If the original data poinis came '
e e woul%l expect to see the picture shown in part (2.

rocess, then w : @
?n this c,ase the points are scattered more or less uniformly throug

the plane. But our data did not come from a purely rar?d.orr} prc;;:es;sc;
Rather, it was generated by a very simple, ve(rky)l)de;ﬁnn. dmi;::;; lilior.l o
i icture in part (b). This
what we actually see is the pic " ution of
ints i it certainly does not fill up
oints is not random, as it ce g
gimensional plane. This fact suggests the pres?nce' (t)}t; a s:::;gli
i i sion sketched earlier is the ge -
attractor. The correlation dimen ! : [he genera®
i is si i ttings in which the system’s outp
zation of this simple idea to se ' ! ' Llives
in an »-dimensional world rather than in the one-dimensional univers

of the logistic rule.

3 : d
So with this as our final test for chaos, let’s lea.ve the tl'xeory‘l bel}T;::h
for a while and turn our attention to some real-life 51.tuatlons inw
we can put these rather abstract notions to productive use.

BULLS, BEARS AND BEER

In a little-read and even less well-understood 1900 goctorltdi;se:cal—l
i i i the Paris bond market, Fre

tion addressing price fluctuations on « nd
ici i ier introduced what has subsequently

mathematician Louis Bachelier intro '

come to be called the efficient markets bypotbeszs' (EMH). R}c;ugh(l:sr

speaking, the EMH states that the driving force behind price ¢ a?g

fcI:r any c,ommodity is new information coming into the market from

THE CHAOTIC 103

the outside world, and that traders process this information so
efficiently that prices adjust instantaneously to this news. So, since the
news itself is assumed to appear randomly, prices move in a random
fashion as well. This in turn implies that no trading scheme based
upon publicly available information can consistently outperform the
overall market averages, since any news affecting a firm is instantly
discounted into the firm’s stock price. Put another way, no amount of
processing of past data involving prices, volumes of trade or any other
statistic can serve as the basis for a trading strategy that will consis-
tently turn a better rate of profit than what you'd get if you simply
held a market portfolio consisting of all the stocks making up a market
index like the Dow Jones Industrial Average.

If the EMH is indeed true, then there can be no exploitable structure
in stocks and commodities price histories; price movements are truly
random. Recently, William Brock, a mathematical statistician from the
University of Wisconsin, has jumped all over this hypothesis. Along
with others like Blake LeBaron, José Scheinkman, Doyne Farmer and
Edgar Peters, Brock has examined long-term price histories of stocks
and commodities using some of the tests outlined in the last section,
looking for signs that prices are being generated by chaotic mecha-
nisms. This work has focused on two central questions: (1) Do stock
price fluctuations come about as the result of an underlying chaotic
rule of behavior? (2) If so, can we make use of this structure in the
data to develop successful trading strategies? Here it's important to
recall the difference between a chaotic process and true randomness.
Chaos involves a deterministic mechanism that generates the appear-
ance of randomness; a genuine random process has no such deter-
ministic underpinning. So if we can convince ourselves that stock
prices are chaotic, then there is a deterministic needle in the haystack
to look for; otherwise there isn't. Let's take a few pages to see what
kinds of answers Brock & Company have come up with.

Figure 3.11 shows the price movements of the Standard & Poor's
Index of 500 stocks (the S&P 500) from January 1950 through July
1989, adjusted for inflation. The S&P 500 index shows a wavelike
behavior and seems to be characterized by periods when prices stay
consistently high or low. Looking at similar measures of the British,
German and Japanese markets, we find analogous overall patterns.
With the exception of a period in the 1970s when the British economy

/
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FIGURE 3.11. THE S&P 500 INDEX, JANUARY 1950-JULY 1989, ADJUSTED FOR INFLATION

was falling apart and the pound was under intense pressure, British
stock prices tend to follow the economy’s internal growth rate. The
German market, on the other hand, shows remarkable stability over
the entire period. But in the Japanese market there are periods of
stable growth followed by accelerated stock values and a collapse
back to steady growth. This same Japanese pattern repeated itself in
the late 1950s, the late 1960s and again in the second half of the 1980s.
The first question then is to determine whether any of these price
movements can be convincingly laid at the doorstep of chaos. This is
where our tests for chaos come into play.

The initial line of attack on the chaos question involves computing
the correlation dimension of each of the price histories. For this, we
assume that the one-dimensional series of prices is merely a slice of
a higher-dimensional surface, the system’s overall attractor. We next
postulate the dimension of the smallest space within which this
attractor can be embedded. To illustrate this notion of embedding,
think of a sphere. It cannot be embedded into a plane, but requires
three dimensions. Analogously, the number of dimensions needed to
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completely encompass the attractor is called the embedding dimension
for the process. After picking (guessing) an embedding dimension R
we t.hen' use the procedures discussed earlier to calculate the statisticai
'correlatlon of successive data points in this embedding space. As we
u?crease': R, we obtain different estimates C(R) for the correlation
dimension. If .thc'ese estimates eventually settle down to a fixed value
Zaeta tal;.e that ;u;utmhg value to be the true correlation dimension of the;
. Figure 3.12 shows the results of such a i

Jata Mg calculation for the S&P

As .we see, the correlation dimension here looks to be about 2.33
a l:1on1ntegfer m.lmber greater than 1—strongly indicative of underlying,
;i:(ci)s lurking 1.n the data. Table 3.1 gives the outcome of this same
X of calculation for each of the stock indexes. These results suggest
t at' there may well be a chaotic mechanism underlying the price-
setting process in each market.

We can check these conclusions by calculating the Lyapunov
Fxponen;( for each of the price histories. Using monthly returns on the
our markets, calculation of the largest L i

' yapunov expo

the results displayed in Table 3.2. g ponent yielded

42
’'y s

—a

ar a cR=2.33

CORRELATION DIMENSION: C(R)
o
® ® «w
L | L 1§
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TABLE 3.1.
CORRELATION DIMENSION OF
STOCK INDEXES

Index Correlation Dimension

S&P 500 §3§
Japan .

Germany 2.41
Britain 294

These exponents can be interpreted in two different ways. On the
one hand, the Lyapunov exponent for the l.J.S‘. market says thé; we
lose predictive power at the rate of 0.024 bltS. per month. So 1hx.’v(e1
can measure the initial state to one bit of precision, or about a t| :;s
of a decimal digit, we will lose all predictive power after 42 mon :
(= 1/0.024). The analogous “forgetting factor” for the other marketsf is
36 months for the UK., 44 months for Japar} a?q 60 mont'hs OI:
Germany. But there is also a “backward-looking interpretation 91
these numbers. Since the U.S. market loses all memory of the txlr:;tla
state after 42 months, this means that market activities 42 months or
more apart are no longer related; the m:rket has completely forgotten

ctivity after a 42-month period. .
an’II‘);thZregoti};g results certainly seem to implic,ate chaos as a m;;?r
factor influencing price fluctuations on the world’s stc'x:l? marketé. is
leads to our second main question: can we use this information to
develop winning ways for our stock market plays?

TABLE 3.2.
LYAPUNOV EXPONENTS FOR
STOCK INDEXES
Index Lyapunov Exponent
S&P 500 0.024
Japan 0.022
Germany 0.016
Britain 0.028

* For technical reasons, information is usually measured in binary digits, or “bits.”
One decimal digit is approximately three bits.
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In an extensive series of statistical experiments on stock price data,
Brock and his collaborators have concluded that although stock
returns do appear to exhibit chaotic structure, the departure from pure
randomness is probably too small to be usefully employed in any
predictive scheme aimed at beating the market. So it looks as if the
good news is that stock price fluctuations do reflect an underlying
deterministic, yet chaotic, rule. The bad news, however, is that the
departure from true randomness in the output of this rule appears to
be too little to serve as the basis for a successful trading scheme. Let
me note, however, that the latter conclusion may be reversed if we
look at other commodities. For instance, there does appear to be
exploitable structure in foreign currency prices. Details of these and
other studies can be found in the references cited in the To Dig Deeper
section for this chapter.

Stock prices are ultimately determined by the collective effect of
many individual human decisions. So as a second foray into the jungle
of real-world chaos, let’s consider a different kind of decision-making
environment—the management of a business enterprise.

In order to reach a widespread market, it's customary for industries
to employ a hierarchical distribution system with dealers at many
different levels. For example, the basic hierarchy of a demand-supply
system for beer distribution consists of the following levels:

* A distributor, who receives the beer from the factory and ships it
to the main markets

* Regional wholesalers, who receive the beer from the distributor and
allocate it to local outlets like supermarkets, liquor stores and bars

* Retailers, who disperse the products to the consumers

Taken together, we'll call this collection of beer suppliers the dealers.

To guard against unpredictable fluctuations in demand and supply,

. €ach dealer maintains an inventory. Besides ensuring the availability
- of beer to the end-consumer, the hierarchical distribution system is

meant to facilitate swift restocking if a dealer’s inventory runs low.

The chain should also function as a buffer to protect the production
. line from fluctuations in consumer demand. Thus, seasonal and other

l40W-frequency components of the variation in demand should propa-
8ate back toward the brewery in a damped fashion.
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Figure 3.13 shows the basic structure of tge slilmplif;l;ec;li b:seef; :i::c:
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FIGURE 3.13. THE PRODUCTIONDISTRIBUTION SYSTEM IN THE BEER GAME
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kept as low as possible. On the other hand, failure to deliver
immediately may force customers to look to alternative suppliers. For
this reason, penalty costs are assessed for accumulating a backlog of
unfilled orders. Therefore, each stock manager must attempt to keep
his inventory at the lowest possible level while at the same time
avoiding a “stockout.” If the inventory begins to fall below the desired
level, extra beer must be ordered to rebuild the inventory. If stocks
begin to accumulate due to a falloff in demand, the order rate must
be reduced. In the experiments discussed here, inventory holding
costs are taken to be $0.50 per case per week, while the cost of a
backlog is set at $2 per case per week.

The production-distribution system we have just described consti-
tutes the rules for what has come to be called the Beer Game in many
graduate business schools in the United States and Europe. In these
schools, MBA students play the Beer Game by taking on the role of
one or another of the four dealers in the overall distribution chain,
The players then try to minimize their cumulative costs over the
duration of the game (usually forty weeks).

The decision made by each player each week is the amount of beer
to be ordered from that dealer’s immediate supplier. The dealers can
base their ordering decisions on all information locally available to
them (e.g., the current level of their inventory/backlog, previous
values of these quantities, expected orders, and anticjpated deliveries).
In addition, the dealers can use their overall conception—their mental
model—of the way the distribution chain works.

Figure 3.14 displays a typical outcome of the Beer Game, showing
the variation in effective inventory (i.e., the actual inventory minus
the backlog) for the different sectors. Note that a negative effective
inventory represents a backlog of unfilled orders.

Generally speaking, a play of the Beer Game is characterized by
large-scale oscillations that grow in amplitude from the retailer to the
wholesaler and from the wholesaler to the distributor. So by the time
the original stepwise increase in customer orders reaches the brewery,
it typically leads to an expansion of production by a factor of six or

more. Another feature of these games is the increase in orders, which
propagates in a wavelike fashion down the chain, depleting the
inventories one by one until it’s finally reflected at the brewery, at
which point the large surplus of orders placed during the out-of-stock
period is produced. These features clearly suggest a strong amplifica-

e
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FIGURE 3.14. A TYPICAL OUTCOME OF THE BEER GAME

tion mechanism at work in the system. At the same timc.:, the. l?eha\;or
is restricted by various disproportionalities G.e, n(?nhne.arltg:s). orrl
instance, we have a pronounced nonlinear 'relatxot?sh1p e:)weef
orders and shipments. Together with the relatively high numdfer o
state variables, these nonlinearities can generate an extraordinary
i lex dynamical behaviors. .
Vafgz an(;)cigzgationyprocess seen in the' beer disfribution cbaxgnw
connected with the built-in time delays mvolv'ed in communclic(;i lg
from one sector to the next. Assume that a partxcu'lar sectorhsth etr;1 Z
experiences a significant increase in demand. To dlscovelr whe u:;au
change in demand is of a more permanent character, P a};ers n:l
hesitate a little before adjusting their own orders by a similar aglou ci
since the very purpose of maintaining an inve.ntory.ns t.o alblslorb rﬁgin
changes in demand. However, because of this hesitation the duthen
communication and shipping delays ensure that the demar} he
exceeds inventory replacements for several weeks. So during 1st
period the inventory level goes down. As a resplt, the. pla}.rers mus
increase their orders beyond the level of the immediate incoming
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orders to build the inventory back up to its desired level. As the players
come to realize that the increase in demand is of a more enduring
nature, they generally increase their orders even more with an eye
toward rebuilding their inventory. .

The amplification phenomenon in the beer system is a direct
consequence of the structure of the distribution chain. But it’s impor-
tant to realize that the beer-distribution chain can be operated in a
stable manner. In fact, experience shows that many players are capable
of doing just that, and only about a quarter of the participants use
ordering policies leading to chaos. Large-scale oscillations are always
observed in the transient behavior leading to the system’s attractor,
however. And in all cases the ordering decisions turn out to be far
from optimal, incurring costs exceeding the theoretical minimum by
more than a factor of four! Now let’s look at some results arising out
of a dynamical model created to formalize much of the empirically
observed results obtained in more than three decades of play.

First of all, we define a stock adjustment parameter a. This quantity
represents the fraction of the inventory shortfall that the participants
order in each round. So, for example, if the retail demand is for 100
cases and only 50 cases are available in the inventory, the shortfall is
50 cases. A stock adjustment value of o = 0.4 would then result in an
order of 20 cases (0.4 x 50). Initially you might wonder why a dealer
wouldn’t always order what's needed to cover the current shortfall, a
policy that corresponds to setting a. = 1. The reason is that there’s a
penalty to be paid for overshooting the anticipated future demands,
thus building up too large an inventory.

Similarly, we define the quantity B to be the fraction of the supply
line, starting from the brewery, that dealers take into account when
placing their orders. So, for example, if B = 1, the players fully
recognize the supply line and do not double-order, while if p = 0,
orders placed are forgotten until the beer arrives. Now for the
promised results.

The Beer Game dynamical system contains twenty-seven state
variables, quantities such as expected demands, inventory levels and
order rates for each of the dealers. Compared with real managerial
systems, the model is a vast simplification; but compared with most
physical systems investigated in the world of nonlinear dynamics, the
model is very complicated. In certain regions of values for a and B,
the distribution system has three positive Lyapunov exponents. There-
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fore we might expect the system to display an L}ngsua!ly compl}llcatgd
spectrum of behaviors. Figure 3.15 shows the dlStl‘lbut.lOn of be av1(1)r
types in the a-f plane. Here the results are plotted using a gray-sca e
code: light gray indicates stable behavior, dark gfay represents aperi-
odic behavior and black denotes periodic behavior. . o
A closer inspection of Figure 3.15 shows sevgral regions of un§ta he
behavior separated by “fjords” of stable behav1o.r. For mstancel, mlt e
regions around $ = 0.50 and B = 0.70 the model is stable for a.l va 1:135
of a, while the narrow peninsula near B = 0.7.2 contains obly
small-amplitude periodic solutions. The other reglpns of unstable
behavior are dominated by large-amplitude ﬂuctu?tlons. The oc§u11;—
rence of unstable behavior is most clearly seen in the lower r1g t
comer, where a is large and B relatively small. Th.ereforei to .stabll.lz;:
the distribution chain it's necessary to use an ordering pollcy.m :fV.hIC
inventory discrepancies are adjusted relatively sllowly. and a significant
fraction of the supply line is taken into con51defat10n. However, B
should not be too large, since a large value of B increases thg costs.
This is because the system will then stabilize in a state for which the

inventories are negative.
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FIGURE 3.15. BEHAVIORAL MODES IN THE o-p PLANE
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The foregoing account has only scratched the surface of the many
fascinating lessons to be learned about complex dynamics from the
Beer Game. We encourage readers to consult the work cited in the
To Dig Deeper section for the details. Now let’s try to summarize what
we've discovered so far about the uncommon sense of chaos and
randomness.

COMPUTING THE COSMOS

Earlier we noted that the 18th-century French mathematician and
physicist Pierre-Simon de Laplace, caught in the grip of the Newtonian
view of the universe as one big clock, made the astounding claim that
given at one instant the positions and velocities of all the particles in
the universe, a superior intellect could predict with complete certainty
what every particle would be doing forever after. Shades of Ar-
chimedes and his lever that could move the world! Leaving aside the
practical difficulties of carrying out such a calculation, Laplace’s bold
assertion marked the highwater mark of the idea that the universe is
a strictly deterministic machine governed by the eternal laws of
mechanics as bequeathed to us by Newton.

Senseless as it seems today, less than two’ centuries after its
proclamation, Laplace’s mechanistic view of the world profoundly
influenced the attitudes of most scientists of his day. It stood in bold
contrast to the dogma Newton replaced, Aristotle’s picture of the
€osmos as a gigantic organism, a view that had stood unchallenged
for over two millennia. And the sharpest point of contrast lay in the
concept of free will. A machine can have no free will; its future is
rigidly determined from its starting point as it chugs along in accord-
ance with the dictates of Newton’s universal recipe. In this rather bleak
view of things, the entire history of the universe is written in a vast
cosmic book, and the idea of an omnipotent, all-knowing God is
reduced to that of a universal librarian merely turmning the pages of
this gargantuan tome. But along came chaos.

And what does the existence of chaotic processes have to tell us
about Laplace’s picture of the universe as a machine? The extremely
limited predictability of chaotic systems, coupled with their appear-
ance in every nook and cranny of day-to-day life, strongly suggests

. that the universe is incapable of predicting the future behavior of even
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a small part of itself. This means that if we want to know what's going
to happen with the weather or the stock market over an appreciable
length of time, about the best we can do is to tumn the system on and
just watch it unfold. These systems seem to be their own fastest
simulator. :

So even if we're willing to accept Laplace’s strictly deterministic
account of natural and human affairs, the future states of the universe
are “open,” in the sense that they cannot be predicted before they
actually occur. Many have latched on to this fact as an argument for
the reality of human free will. Others have suggested that it introduces
an element of creativity into nature, endowing the cosmos with an
ability to generate something that’s not already implicit in its earlier
states. Regardless of what interpretation we favor, the one thing that
can be said for certain is that the existence of such intrinsically
unpredictable processes means that we will never be able to prove
that the future of the universe is fixed. If there is a cosmic book
containing the history of each and every particle and person, the last
chapter of that magnum opus will remain forever unwritten.

Part of the message of chaos is that complicated behavior need not
require complicated dynamics. Even the simplest sort of nonlinear
behavior, like that arising from the Circle-10 or the logistic rules, can
lead to behavior defying any attempt to compactly summarize and
express the overall pattern. A central role in arriving at these results
was played by the fact that it's impossible, practically speaking, to
know a system’s exact initial state; it's effectively uncomputable. But
when it comes to surprises, it'’s not just in the realm of chaos that
uncomputability rears its ugly head.

Our focus in the last two chapters has been on dynamical systems,
mathematical style. But manifolds and vector fields are not the only
way to represent dynamical processes. Instead of representing them
as symbols on a piece of paper or a blackboard, we can also think of
them as strings of binary digits inside a computing machine. This point
of view dramatically changes how we regard such processes, espe-
cially the kinds of questions we can ask about them and the sorts of
responses we're ready to dignify with the appellation answer. So for
the next chapter or two we leave the cozy confines of traditional
mathematics, shifting our venue to that handmaiden of modem
science and the modern scientist, the digital computer.

FOUR
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Intuition: All real-world
trutbhs are the logical outcome
of following a set of rules.

“Damn it all, we want to get at the truth” [said Lord Peter
Wimsey.]
“Do you?” said Sir Impey drily. “I don’t. I don’t care twopence
about the truth. I want a case.”

—DOROTHY L. SAYERS

God offers to every mind its choice between truth and repose.
Take which you please—you can never bave both.
~—RALPH WALDO EMERSON

Prove all things; bold fast that which is good.
—NEW TESTAMENT, I THESSALONIANS, V, 21

THE POWER OF PARADOX

Exhibit A

Article. V' of t.he U.S. Constitution gives conditions under which the
Constitution itself may be amended. Specifically, it states that when-
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ever at least two-thirds of both the House and the Senate agree, a
constitutional amendment may be enacted, subject to ratification by
three-fourths of the state legislatures. Now consider whether Article V
may authorize its own amendment or repeal. Can a rule that allows
the changing of other rules also admit its own change? Note that this

is an “endo” paradox, in that it pertains to changing the rules of the -

system by using a rule that itself is part of the system.

We have here a legal version of the so-called paradox of omnipo-
tence. Consider the situation where the Congress has the power to
make any law at any time. If the Congress indeed has such powers,
then can the legislators limit their own power to make law? If they
can, then they can’t—and conversely. So we may say that either there
is a law that the Congress cannot make or a law that it cannot repeal.

Clearly, if we allow the assumption of an omnipotent Congress to
stand, then we come to a genuine paradox. But such a postulate
implies the affirmation and the negation of the idea that Congress can
limit its own power irrevocably. This assumption implies a contradic-
tion; thus it is false. And since its being false does not imply its truth,
we can call the postulate of an omnipotent Congress false with finality.

By the view that such an omnipotent Congress cannot exist as
defined, a Constitutional clause authorizing its own amendment or
that actually limits itself by self-amendment is a contradiction. So we
conclude that amendment clauses are immutable except by illegal or
extra-legal means like a revolution. In other words, they can only be
amended if we take an “exo-legal” view of the situation, in effect
allowing the system to examine itself from the outside.

Exhibit B

Early in this century, French mathematician Philip Jourdain distrib-
uted calling cards printed on both sides with the messages shown in
Figure 4.1. Jourdain’s calling card paradox is a variant of a paradox
noted by 14th-century Venetian philosopher Jean Buridan. According
to Buridan, Socrates makes the single statement “What Plato says is
false.” Similarly, Plato makes the statement “What Socrates says must
be true.” The combination of these two statements immediately leads
to the conclusion that what Socrates says must be both true and false
at the same time. Both Jourdain’s and Buridan’s double-edged para-
doxes are illustrations of the famous Liar, or Epimenides, paradox
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FRONT

The statement on the other side of
this card is true.

BACK

The statement on the other side of

this card is false.

FIGURE 4.1. PHILP JOURDAIN'S CALLING CARD

rep‘»oned by Saint Paul in his epistle to Titus, which involves the Cretan
Epimenides making the statement “All Cretans are liars.”

‘ %at’s interesting about the these Liar paradoxes is that the
individual statements taken separately make perfectly good sense. But

like mixing nitric acid and glycerin, things blow up in your face when
the two statements are combined.

Exhibit C

- The Dutch graphics artist M. C. Escher was famous for the creation of

engravings that are like formally constructed logical paradoxes
Among the best known of these visual paradoxes is the 1948 litho-'
graph Drawing Hands, shown in Figure 4.2. It shows a pair of hands
each of which is drawing the other. Moreover, both hands are depicteci
ona Piece of paper, which is itself tacked onto a drawing board.
This lithograph contains several paradoxical aspects. First of all
there is the self-referential circularity created by each hand’s drawing’
of the. other. But there is also the artistic contradiction between the
two-dimensionality of figurative drawing and the three-dimensional
world that the drawing purports to represent. Thus, in Drawing
Hands, as in many of his other works, Escher is stating that all drawing
is a form of illusion. And in each of his drawings, Escher illustrates
this c'leception with a visual logic so forceful that the viewer cannot
possibly escape the contradictory effects the chain of logic engenders.

Exhibit D

In 1971, Bela Julesz, a researcher at the AT&T Bell Laboratories
reported the remarkable discovery that three-dimensional images,
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“ FIGURE 4.2.
DRAWING HANDS BY M.C. ESCHER

could be generated by scattering black dots on a flat giec'e of paper.
An example is shown in Figure 4.3. At first glance, this figure loka
about as boring as a figure can be, essentially just a randon? scat@rmg
of dots. But the surprise comes when we see a real three-dimensional

FIGURE 4,3. A JULESZ FIGURE
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structure jumping out at us from beneath this seemingly patternless
fagade. Here’s how to see this three-dimensional image.

First note the two black boxes at the top of the image. Stare at these
boxes for a while, letting your eyes diverge until you see three boxes.
The one in the middle is just like the phantom “sausage” you see when
you point your two index fingers at each other and defocus your eyes.
Once you can see the third box in the middle, shift your gaze
downward (without refocusing your eyes) and stare at the dots. Shortly,
you should see an image form in the center of the figure that looks
like the top halves of six golf balls arranged in a circle so that their
sides are touching. The balls seem to be resting on a set of circular
ledges whose common center is the center of the circle made by the
balls. (Note: It may take a bit of time for this image to form, so if you
don't see it right away, keep trying. Like a good—but subtle—joke,
when you finally get it the reward will make the effort all worthwhile.)

When we look at an object in the real world, the retina of each eye
registers a slightly different image. The brain then fuses these two
images to create the perception of a solid object. You may recall the
3-D movies of the 1950s, in which specially colored red and blue
glasses were used to project different images from the screen onto
each retina. With that technique, the eye looking through the red lens
sees only the blue part of the red-and-blue screen image, while the
eye looking through the blue lens sees only the red part of the image.
What these Julesz figures illustrate is that sometimes it's possible to
obtain the same stereoscopic effects without having to use 3-D glasses.

So what are Exhibits A through D trying to tell us about paradox,
surprise and truth? Contemplation of these lofty matters leads to the
conclusion that by following a set of rules, we don’t always get to the
truth. In some cases, as with the problem of an omnipotent Congress,
the rules can lead to contradiction. In other cases, truth seems to
escape being fenced in by a set of logical rules, as was seen verbally
in the Liar paradox of Exhibit B and visually in the Escher graphic of
Exhibit C. Finally, the Julesz figure of Exhibit D shows that the same
pattern can contain more than one truth. But by following a set of
rules (in this case, the rules employed by the human visual-processing
system), we are able to see only one of these truths at a time—literally.

The common element here is the idea of getting at the scheme of
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things by following a set of rules, a formula, a recipe. Speaking slightly
more formally, this leads us to ask what kind of real-world truths we
can hope to uncover by carrying out a computation. When it comes
to forming expectations about events of the world, we often employ
prescriptions of various sorts that amount to following a set of rules.
And it’s the end result of these rules that constitute our expectations,
which in turn serve as the root cause of surprise. So in this chapter
we ask if every real-world truth is, at least in principle, obtainable as
the end result of a logical train of reasoning. Or, on the other hand,
are there truths that no amount of rule-following will ever enable us
to know. This idea leads us to ask if there are limits to the power of
rational thought. Are there truths about the world that can never be
accessed by carrying out a computation? So our leitmotif in this chapter
is the idea of computation as a truth-generating mechanism.

REALITY RULES
Consider the following two sets of arguments:

Argument A

Everybody loves a lover.
George doesn’t love himself.
Therefore George doesn’t love Martha.

Argument B

Either everyone is a lover or some people are not lovers.

If everyone is a lover, Waldo certainly is a lover.

If everyone isn't, then there is at least one nonlover, call her Myrtle.
Therefore if Myrtle is a lover, everyone is.

Given the well-chronicled human proclivity for fuzzy thinking and
logical inconsistency, it probably comes as a bit of a surprise for most
of us to discover that both of these chains of reasoning are logically
correct. Wouldn't it be nice if we had a logic machine into which we
could feed these kinds of statements, turn the handle and have the
machine tell us with finality whether the line of argument is logically
valid? Such a machine is what logicians call a decision procedure. And
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it was the search for just such a procedure that sparked off Alan
Turing’s investigation into the foundations of computing. To ease our
way into this story, let’s focus on the ideas underlying the difference
between something’s being logically correct—like arguments A and
B—and something’s being true—like a real-world George who really
does not love some real-world Martha.

In logic and mathematics, the road to truth is paved by the stones
that nowadays we call a formal system. In general terms, a formal
system is a collection of abstract symbols, together with a set of rules
for assembling the symbols into strings. Such a system has four
components:

* Alphabes—This is simply the set of abstract symbols itself. These
may be as primitive as the symbols o and —. But they could also be
much more concrete, such as the characters of the Latin alphabet,
;}:)ng with the symbols for punctuation, logical combination and the

e.

* Grammar—The grammatical rules of the system specify the valid
ways in which we can combine the symbols of the alphabet to form
finite strings of symbols (words), as well as how such strings may be
combined into larger statements. Statements of this type are termed
well formed.

* Axioms—A set of well-formed statements that are taken as given
strings of the system are called the axioms of the system. Thus, an
axiom is a string of symbols that we accept as a valid statement without
its having to be proved.

* Rules of inference—These are the procedures by which we
combine and change axioms and other well-formed statements into
new well-formed strings.

Now suppose we are given a well-formed statement 4 and ask if it is
a logically correct consequence of the axioms of the system. We say
that A4 is provable in the system if there is a finite chain of statements

MoM>M—> ... 5oM, =4
where each M; is either one of the axioms of the system or is obtained

from the previous Ms via one of the rules of inference. Well-formed
statements for which such a proof sequence exists are called the
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theorems of the system. Since the idea of a formal system is so centr:al
to our concerns in this chapter, let's look at a concrete example to fix
these basic concepts firmly.

Suppose the symbols of our system are the three more or less
culturally free objects % (star), ¥ (Maltese cross), and 1% (sunburst).
Let the two-element string ¥ be the sole axiom of the system, and
take the rules of inference to be

Rulel: x% o xi%

Rulell: ®#x — ¥xx ~
Rule III: #%% > %

Rule IV: %% > —

In these rules, x denotes an arbitrary finite string of stars, crosses and
sunbursts, while the — (arrow) means “is replaced by.” The interpre-
tation of Rule IV is that any time two stars appear they can be dropp'ed
from the string. Now let’s see how these rules can be used to derive
a theorem. .

Starting with the single axiom ¥, we can deduce that the strl‘ng
%% 1% is a theorem by applying the rules of inference in the following
order:

- 2 - [ aded - [ Eusudnsnd - L3 g
(Axiom) (Rule ID) (Rule 1D (Rule IID

Note that when applying Rule III at the final step, we could have
replaced the last three s from the preceding string rather than the
first three, thereby ending up with the theorem ¥x% instead of 'I'.*ik.
You will probably have also noted that all the intermediate‘strmgs
obtained in moving from the axiom to the theorem begin with a '14
It's easy to see from the action of the transformation rules for this
system that every string will have this property. This is a metamatbe-
matical property of the systein since it’s a statement about the system
rather than one made in the system itself. We'll see in a moment th.at
this distinction between what the system can say from the inside .(1ts
strings) and what we can say about the system from the outside
(properties of the strings) is of the utmost importance for u.nder-
standing the limitations of formal systems when it comes to getting at
real-world truths.
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From the foregoing example, if not from the definition of a formal
system itself, it’s evident that in a very definite sense the theorems of
a formal system are already present in the axioms and rules of
inference. All a proof sequence does is make explicit that which is
already implicit. Thus we can think of a formal system as a compact
way of summarizing what may be a very large body of “fact.” But
these are just formal facts, essentially statements of what kind of logical
consequences follow from given assumptions.

But what do Maltese crosses, sunbursts, and stars have to do with
anything? Speaking even more specifically, what do these symbols
have to do with very definite mathematical things like the sum of the
first n positive integers or the angles of a triangle? The answer to this
eminently sensible query lies in one word: interpretation. Given a
particular kind of mathematical structure, we have to make up a
dictionary to translate (i.e., interpret) the abstract symbols and rules
of the formal system into the objects of that structure. By this
dictionary-construction step, we attach a meaning to the abstract,
purely syntactic structure of the symbols and strings of the formal
system. Thereafter, all the theorems of the formal system can be
interpreted as true statements about the associated real-world objects.

The following diagram illustrates this crucial distinction between the

purely syntactic world of formal systems and the semantic world of
mathematical objects.

Formal World Mathematical World
(Syntactics) (Semantics)
Symbols and strings Avrithmetic {e.g., number theory)

Axioms < Dictionary = Geometry {e.g., topology)
Rules of inference Analysis (e.g., calculus)

U
Theorems Mathematical truths

This kind of translation between abstract symbols and real-world
things is not just confined to mathematical objects. For example,
consider the game of chess. Typically it’s played with a collection of
chess pieces on a chessboard consisting of black and white squares.
We can all agree, I think, that these are indeed real-world objects.
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Moreover, the game involves a set of rules specifying how the pieces
can move, what constitutes a legal position on the board, how one
piece captures another and so forth. This is the real-world version of
the game of chess. But there is another version, one existing purely
in the world of symbols and syntax (i.e., formal systems), and this
version mirrors exactly the real-world game we normally see. Here’s
what the formal-system version looks like.

A moment’s thought shows that the game of chess is really a
relationship between one set of abstract symbols (the Black and White
pieces) and another set of abstract symbols (the squares of the board).
In short, there is nothing crucial about the material embodiment of
these symbols insofar as the essentials of the game are concerned. So,
for instance, we could assign a set of symbols as in our *-#-1x system
to represent the various playing pieces, along with another set of
symbols (e.g., the set of positive integers 1, 2, . . . 64) to represent the
squares of the board. The grammar of such a system would then
specify what strings of symbols (statements) are well formed (ie.,
represent valid configurations of pieces on the board; e.g., a Black
bishop cannot sit on a white square). Such grammatically correct
statements represent the possible states of play at any stage of the
game. Moreover, the rules of inference of this formal system are simply
the different ways that one well-formed sentence can be transformed
into another. In other words, the rules of inference represent the
allowable moves at any stage of play. Finally, the sole axiom of the
game of chess is the symbol string corresponding to the way the pieces
sit on the board at the beginning of play.

So we see that the real world of chess pieces and playing boards
can be translated into a formal-world version of the game involving
only abstract symbols, rules of inference and axioms. And the same
line of argument applies to every other real-world situation that can
be described in a finite number of words. We'll return to this point
with a vengeance later on.

Let me again emphasize that there are two entirely different worlds
being mixed up here: the purely syntactic world of the formal system
and the meaningful world of mathematical objects and their proper-
ties. And in each of these worlds there is a notion of truth: theorems
in the formal system, factually correct statements such as “2 +5=7"
or “the sum of the angles of a triangle equals 180 degrees” in the realm
of mathematical reality. The connection between the two worlds lies
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¢ in the interpretation of the elements of the formal system in terms of
. the objects and operations of the mathematical structure. Once this
© dictionary has been written and the associated interpretation estab-
. lished, then we can hope that there will be a perfect, one-to-one
. correspondence between the true facts of the mathematical structure
~ and the theorems of the formal system. Speaking loosely, we seek a
formal system in which every truth translates into a theorem, and
conversely. Such a system is termed complete. We'll consider the
degree to which this ideal relationship between the world of symbols
. and the world of mathematical facts can be approached shortly. For
- the moment, however, let’s stay within the formal world of symbols
and rules, looking just a bit deeper into the ins and outs of computing
. machines and formal rule-based systems. ,
] We are now in a position to describe the problem that stimulated
Alan Turing to devise the theoretical gadget now called a Turing
. machine. This question goes under the rubric of Hilbert’s Decision

: Problem. It can be stated as follows: For every formal system F, is it
- possible to find a finitely describable formal system that “decides” any
. well-formed string in F? Loosely speaking, we ask if there is a
~ systematic procedure that will tell us if any given well-formed string
- of the formal system F is or is not a theorem.

For some formal systems, such decision procedures clearly do exist.
For example, in the %-®-{* system given earlier, such a decision
procedure consists of the following rules: A well-formed string is a
theorem if and only if (1) it begins with a %, (2) the remainder of the
string consists solely of %s and $¥s and (3) the number of s is not a
- multiple of 3. .

As noted, Turing’s attack on the Decision Problem led him to
construct the key element in the modern theory of computation, the
Turing machine. So let’s now turn our attention away from formal
logical manipulations and take a longer look at Turing’s accomplishment.

MAGIC MACHINES AND BUSY BEAVERS

What is a computation? Oddly enough, despite the fact that humans
have been calculating things for thousands of years, a proper scientific
answer to this seemingly straightforward query was not forthcoming
until 1935. In that year, Alan Turing was a student at Cambridge
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University sitting in on a course of lectures in mathematical logic. A
central theme of the course was the issue of whether or not there
could exist a finite set of rules, in effect a mechanism, that would
settle the truth or falsity of every possible statement about numbers
that could be made in, say, the language of Russell and Whit'ehead’s
(in)famous work, Principia Matbematica. In short, the question was
whether there was a machine into which we could feed any statement
about numbers so that after a finite amount of time the machine would
spit out the verdict on the statement TRUE or FALSE.

Turing’s speculations about what it would mean to haYe such a
mechanical procedure, or effective process, for solving this famous
Decision Problem led him to develop a mathematical type of com-
puter. This abstract gadget, the Turing machine, provided the first
completely satisfactory answer to what it means to carry out a
computation.

Turing took the commonsense view of looking at Wh?.t a human
being actually does when carrying out a computation. As it turns qut,
the distilled essence of computing comes down to the rote following
of a set of rules. So, for example, if you want to calculate the square
root of 2, you might employ the following rule for creaFing a set of
numbers {x;} that will (hopefully) converge to the qu'antlt}.' N2: %, 41
= (x,/2) + (1/x,). Starting with the initial approximanor.l (1.e.., guess)
Xo = 1, this rule generates the successively better approximations x =
3/2 = 1.5, x, = 17/12 = 1.4166, x5 = 577/408 = 1.4142. So .aftc.:r. just
three steps, we have the desired answer correct to four. significant
figures. For our purposes here, what's important about this so-?alled
Newton-Raphson method for calculating the square root of 2 is not
the rapid rate of convergence, but that the procedure represe‘nts a
purely mechanical, step-by-step process (technically; an algorithm)
for finding the desired quantity.

The fact that every step in such a procedure is completel'y and
explicitly specified led Turing to believe that it would be p0551bl.e to
construct a machine to carry out the computations. Once the algorithm
and the starting point are given to the machine, computatk')n of Fhe
sequence of results becomes a purely mechanical matter, mvolvmg
no judgment calls or interventions by humans along the .way. But it
would require a special type of machine to accomplish this computa-
tional task; not just any mechanical device will do. A large part of
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Turing’s genius was to show that the very primitive type of abstract
computing machine he invented is actually the most general type of
computer imaginable. In fact, every real-life computer that's ever been
built—or ever will be built—is just a special case that materially
embodies the machine that Turing dreamed up. This result is so central
to understanding the limitations of machines that it’s worth our while
to take a few pages to describe it in more detail.

A Turing machine consists of two components: (1) an infinitely long
tape ruled off into squares that can each contain one of a finite set of
symbols, and (2) a scanning head that can be in one of a finite number
of states or configurations at each step of the computational process.
The head can read the squares on the tape and write one of the
symbols onto each square, replacing whatever symbol happens to be
there. The behavior of the Turing machine is controlled by an
algorithm, or what we now call a program. The program is composed
of a finite number of instructions, each of which is selected from the
following set of possibilities: change or retain the current state of the
head; print a new symbol or keep the old symbol on the current
square; move left or right one square; stop. That’s it. Just seven simple
possibilities. The overall situation is depicted in Figure 4.4 for a Turing
machine having twelve internal states labeled A through L. Which of
the seven possible actions the head takes at any step of the process
is determined by the current state of the head and what it reads on
the square it’s currently scanning. But rather than continuing to speak
in these abstract terms, it’s simpler to run through an example in order
to get the hang of how such a device operates.

Assume we have a Turing machine with three internal states, A, B
and C, and that the symbols that can be written on the tape are just
the two integers 0 and 1. Now suppose we want to use this machine
to carry out the addition of two whole numbers. For definiteness, we’ll
represent the integer n by a string of n consecutive 1s on the tape.
The program shown in Table 4.1 serves to add any two whole numbers
using this 3-state Turing machine.

The reader should interpret the table entries in the following way:
the first entry is the symbol the head should print, the second element
is the direction the head should move, R(ight) or L(eft), while the final
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FIGURE 4.4. A 12-STATE TURING MACHINE

TABLE 4.1.
A TURING MACHINE
PROGRAM FOR ADDITION
Symbol Read
State 1 0
A 1,R A 1,R B
B 1,R, B 0LC
C 0, STOP | STOP
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element is the state the head should then move into. Note that the
machine stops as soon as the head goes into state C. Let’s see how it
works for the specific case of adding the numbers 2 and 5.

Since our interest is in using the machine to add 2 and 5, we place
two 1s and five 1s on an otherwise blank (all 0s) input tape, separating
them by a 0 to indicate that they are two distinct numbers. Thus the
machine begins by reading the input tape

JoJoJo[iTiJo[aa[a[1J1]JoJoJo]o]..

By convention, we assume the head starts in state A and reads the
first nonzero symbol on the left. Since this symbol is a 1, the program
tells the machine to print a 1 on the square and move to the right,
retaining its internal state A. The head is still in state A and the current
symbol read is again a 1, so the machine repeats the previous step
and moves one square farther to the right. Now, for a change, the
head reads a 0. The program tells the machine to print a 1, move to

- the right, and switch to state B. I'll leave it to the reader to complete

the remaining steps of the program, verifying that when the machine
finally halts, the tape ends up looking just like the input tape above,
except with the 0 separating 2 and 5 having been eliminated (i.e., the
tape will have seven 1s in a row, as required).

Before looking at the revolutionary implications of Turing’s idea,
let me pause here to emphasize that Turing machines are definitely
not machines in the everyday sense of being material devices. Rather
they are “paper computers,” completely specified by their programs.
Thus, when we use the term machine in what follows, the reader
should read program or algorithm (i.e., software) and put all notions
of hardware out of sight and out of mind. This abuse of the term
machine should have been clear from Turing’s idea of an infinite
storage tape, but it’s important to make the distinction as clear as
possible: Turing machine = program. Period.

Modern computing devices, even home computers like the one I'm
using to write this book, look vastly more complicated and powerful
in their computational power than a Turing machine with its handful
of internal states and very circumscribed repertoire of scanning-head
actions. Nevertheless, this turns out not to be the case, and a large
measure of credit is due to Turing for recognizing that any algorithm
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TABLE 4.2.
A CODING SCHEME FOR THE TURING MACHINE
LANGUAGE
PROGRAM STATEMENT CODE
PRINT O 00(])
PRINT 1 00
GO RIGHT 010
oty NT 10100 0(1):
GO TO STEP i IF THE CURRENT 10100 ......
SQUARE CONTAINS 0 ms
GO TO STEP i IF THE CURRENT 11011 ...... 10
SQUARE CONTAINS 1 ms
STOP 100

(i.e., program) executable on any computing machine—id.ealized or
otherwise—can also be carried out on a particular version of his
machine, termed a universal Turing machine (or UTM for short). So
except for the speed of the computation, which definitely is hardwar,e-
dependent, there’s no computation that my machine (or anyone else’s)
can do that can't be done with a UTM. .

To specify his UTM, Turing realized that not only the input data'of
the problem, but also the program itself could be coded by a series
of 0s and 1s. Consequently, we can regard the program as arllo'ther
kind of input data, writing it onto the tape along with the flata itis to
process. Table 4.2 shows one of the many ways this coding can be
done.

With this key insight at hand, Turing constructed a program that
could simulate the action of any other program P when given P as
part of its input (i.e., he created a UTM). The operation of a UTM is
simplicity itself.

Sll).lppgse we have a particular Turing machine specifi.ed by tf}e
program P. Since a Turing machine is completely determined by its
program, all we need do is feed the program P into the UTM along
with the input data. Thereafter the UTM will simulate the action of P
on the data; there will be no recognizable difference between running
the program P on the original machine or having the UTM pretend it

is the Turing machine P.
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What's important about the Turing machine from a theoretical point
of view is that it represents a formal mathematical object. So with the
invention of the Turing machine, for the first time we had a
well-defined notion of what it means to compute something. But this
then raises the question What exactly can we compute? In particular,
is there a suitable Turing machine that will compute every number?
Or do there exist numbers that are forever beyond the bounds of
computation? Turing himself addressed this problem of computability
in his trail-blazing 1936 paper, in which he introduced the Turing
machine as a way of answering these fundamental questions.

First of all, let's be clear on what we mean by a number being
computable. Put simply, an integer # is said to be computable if there
is a Turing machine that, starting with a tape containing all 0s, will
stop after a finite number of steps with the tape then containing a
string of 7 1s and all the rest 0s. The case of computing a real number
is a bit trickier since most real numbers consist of an infinite number
of digits. So we call a real number computable if there is a Turing
machine that will successively print out the digits of the number, one
after the other. Of course, in this case the machine will generally run
on forever. With these definitions in hand, let’s look at the limitations
on our ability to compute numbers.

It’s an easy exercise to show that for a two-symbol Turing machine
with 7 possible states of the reading head, there are exactly (47 + 4)*"
distinct programs that can be written. This means that an n-state
machine can compute at most this many numbers. Letting » take on
the values n =1, 2, 3, . . . , we conclude that Turing machines can
calculate at most a countable set of numbers; that is, a set whose
elements can be put into a one-to-one correspondence with a subset
of the positive integers (the “counting” numbers). But there are
uncountably many real numbers; hence, we come to the perhaps
surprising result that the vast majority of real numbers are not
computable.

This counting argument is one way to show the existence of
uncomputable numbers, albeit a somewhat indirect one. Turing
himself used a more direct procedure based upon what's known as
Cantor’s Diagonal Argument. It goes like this. Consider the following
listing of names Smith, Otway, Arquette, Bethel, Bellman and Imhoff.
Now take the first letter of the first name and advance it alphabetically
by one position. This gives a T. Then do the same for the second letter
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of the second name, the third letter of the third name and so on. The
result is “Turing.” It's clear, I think, that the name Turing could not
have been on the original list, since it must differ from each entry on
that list by at least one letter.

Turing’s argument for the existence of uncomputable numbers
follows the same line of reasoning. Suppose you list all computable
numbers, written out by their decimal expansions (even though such
a list will be infinitely long). Now advance the first digit of the first
number, the second digit of the second number and, in general, the
kth digit of the kth number. In this way we create a new number.
This number cannot have been on the original list, since it differs in
at least one position from every number on that list. But by definition,
the list contains all computable numbers. Hence the new number must
be uncomputable.

From the foregoing arguments, we see that uncomputable numbers
are not rara avis in the arithmetic aviary. Quite the contrary, in fact,
it's the computable numbers that are the exception rather than the
rule. This surprising fact shows that all the numbers we deal with in
our everyday personal and professional lives, which by their very
nature must be computable, form but a microscopically small subset
of the set of all possible numbers. The overwhelming majority of
numbers lie in a realm that's impossible to reach by following the rules
of any type of computing machine. Now let’s look at an amusing
example of a specific uncomputable quantity.

The Busy Beaver Game

Suppose you're given an input tape filled entirely with Os. The
challenge is to write a program for an n-state Turing machine such
that (1) the program must eventually halt, and (2) the program prints
as many 1s as possible on the tape before it stops. Obviously, the
aumber of 1s that can be printed is a function only of n, the number
of states available to the machine. Equally clear is the fact that if n =1,
the maximum number of 1s that can be printed is only one, a result
that follows immediately from the requirement that the program
cannot run on forever. If n = 2, it can be shown that the maximum
number of 1s that can be printed before the machine halts is four.
Programs that print a maximal number of 1s before halting are called
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;:::;er ivug] fle;c.wers. 4T;lbl: 4.3 gives the program for a 3-state Busy
, igure 4.5 shows how this program c int si
the tape before stoppi o he oo s
ping. (Note: the position of th i
head is shown in boldface in the fi oL
. ! igure.) Now for our uncomputabl
guantlty. Define BB(n) to be the number of 1s written by anpn-:tat:
usy Beaver program. Thus, the Busy Beaver function BB(%) is the
g;eatest number 9f 1s that any halting program can write on the tape
;Bz(lg)n-s‘tiate ’I(‘jugntGr)nactéine. We have already seen that BB(1) = 1
=4, an = 6. From these results for small ,
‘ : \ values of n,
ﬁ:rmltght think th:?.t the function BB(n) doesn’t have any particularly
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y its cover (or title), you also can’t judge a function from its

behavior for just a f i
: ew values of its argument i
investigation has shown that ® - fact, detaled

. 4096 4
BB(12) 2 6 x 4096064

wh'ere the number 4096 appears 166 times in the dotted region! So in
‘Ttrymu rifgto cal;glate the value of the Busy Beaver function for a 12-state
machine, we quickly arrive at a numbe i
effectively infinite. It turns out th e of o
. at for large enough values of »n
, th
:fig:[BB(n) exceeds the value of any computable function evaluates
2t that ;a;;i tr:}l)?lbgr r; In other words, the Busy Beaver function BB(7)
€. S0 for a concrete example of an effectivel
putable number, just take a Turin i rge mumber of
) g machine with a large numb
states 7. Then ask for the value of th o for it
e Busy Beaver function for th:
value of n. The answer is to all intents and purposes an uncomputab?ef
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FIGURE 4.5. THE ACTION OF A 3-STATE BUSY BEAVER

number. Now to firmly fix the difference between somethin’g’s ex1nglgr
and our being able to compute that same something, let's conside
another kind of game.
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The Turing Machine Game

Assume there are two players, called rather unimaginatively 4 and B.
These players take turns choosing positive integers as follows:

Step 1: Player A chooses a number .
Step 2: Knowing #, Player B picks a number m.
Step 3: Knowing m, Player A selects a number k.

Player A wins if there is some n-state Turing machine that halts in
exactly m+k steps when started on a tape containing all 0s. Otherwise,
Player B wins. It's fairly clear that this is a game of finite duration,
since once the players have chosen their integers, all we need do is
list the (4n + 4)°" Turing machines having # states, and run each of
them for exactly m + & steps to determine a winner.

It's a well-known fact from game theory that any game of fixed,
finite duration is determined, in the sense that there is a winning
- strategy for one of the players. In this case, it's Player B. Nevertheless,
- the Turing Machine Game is nontrivial to play, since neither player

has an algoritbm (i.e., a computable strategy) for winning the game.
The proof of this fact relies on showing that any winning strategy
~ involves computing a function whose values grow faster than those
. of the Busy Beaver function. But we already know that BB(n) is

uncomputable; hence, this new function must also be uncomputable.

~ The reader is referred to the To Dig Deeper section for further details
of this proof.

From our definition of computability, together with the Busy Beaver
example above, it's clear that you haven't really computed anything
until the computational process terminates—even in the case of real
numbers, where any finite computation generally yields only an
approximation to the number you're trying to compute. This simple
observation leads to a key question in the theory of computation: Is
- there a general procedure (ie., an algorithm) that will tell us in
. @dvance whether or not a particular program will halt after a finite
- number of steps? In other words, given any Turing machine program
; P and a set of input data J, is there a single program that accepts P

]
£

, »and I and that will tell us whether or not P will halt after a finite
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number of steps when processing the data I? Not.e careful.ly that what
we're asking for here is a single program that will work in all cases.
This is the famous Halting Problem.

To see that the question is far from trivial, suppose we have a
program P that reads a Turing machine tape and stops wben it comes
to the first 1. So in essence the program says, “Keep reac.iu?g until 'you
come to a 1, then stop.” In this case, input data I co.nsnstmg entirely
of 1s would result in the program stopping after the first step. On the
other hand, if the input data were all 0s, then the program would
never stop. Of course, in this situation we have a clear-cut procedltlre
for deciding whether or not the program will halt vyhen Processmg
some input tape: the program will stop if and only. if the input tape
contains even a single 1; otherwise, the program will run on forever.
So here’s an example of a halting rule that works for any data set

d by this especially primitive program.

pr(;;:fssftun;ely, moit real computer programs are Yastly more com-
plicated than this, and it's far from clear by simple inspection of the
program what kinds of quantities will be computed as the program
goes about its business. After all, if we knew what the program was
going to compute at each step, we wouldn’t have’ to run the program.
Moreover, the stopping rule for real programs is alx.nos‘t‘ always ag
implicit rule of the foregoing sort, saying sc')r.nethmg like “If sucht;n
such a quantity satisfying this or that condition ?ppears, stog; o erl;
wise, keep computing.” The essence of the Halting Proble@ is to as|
if there exists any effective procedure that can be applied to the
program and its input data to tell beforehan.d ?vhether or not Fhe
program’s stopping condition will ever be satlsﬁed: In 1936, Turing
settled the matter once and for all in the negative: given ?1 program P
and an input data set I, there is no way in general to say if P will ever

ini cessing the input /. '
fm’llfll:epr:c(:tion ofga Turing machine finally put the idea of a computation
on a solid mathematical footing, enabling us to pass from the va'lgue,
intuitive idea of an effective process to the precise, mathematlca.lly
well-defined notion of an algorithm. In fact, Turing’s work, 'fllong with
that of the American logician Alonzo Church, forms the basis for what
has come to be called the

Turing-Church Thesis Every effective process is tmple-
mentable by running a suitable program on a UTM.
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The key message of the Turing-Church Thesis is the assertion that any
quantity that can be computed can be computed by a suitable Turing
machine. This claim is called a thesis and not a theorem because it’s
not really susceptible to proof. Rather, it's more in the nature of a
definition, or a proposal, suggesting that we agree to equate our
informal idea of carrying out a computation with the formal mathe-
matical idea of a Turing machine.

To bring this point home more forcefully, it’s helpful to draw an
analogy between a Turing machine and a typewriter. A typewriter is
also a primitive device, allowing us to print sequences of symbols on
a piece of paper that is potentially infinite in extent. A typewriter also
has only a finite number of states that it can be in: upper and lower
case letters, red or black ribbon, different symbol balls and so on. Yet
despite these limitations, any typewriter can be used to type The
Canterbury Tales, Alice in Wonderland or any other string of symbols.
Of course, it might take a Chaucer or a Lewis Carroll to tell the machine
what to do. But it can be done. By way of analogy, it might take a
very skilled programmer to tell the Turing machine how to solve
difficult computational problems. But, says the Turing-Church Thesis,
the basic model—the Turing machine—suffices for every type of
problem that is at all solvable by carrying out a computation.

It has probably not escaped the reader’s attention that there is a
striking parallel between the actions taken by a Turing machine as it
goes about performing a computation and the steps one follows in
creating a deductive argument leading from premises to conclusions

" in a logical step-by-step fashion. Turing showed the equivalence

between a formal logical system and a Turing machine. In short, given
any digital computer € with unlimited memory, we can find a formal
system F such that the possible outputs of C coincide with the possible
theorems of F, and conversely. Using this equivalence, Turing restated
the Decision Problem in computer-theoretic terms as the Halting
Problem considered earlier. And since the two problems are logically
equivalent, the fact that the Halting Problem has no solution implies
that the Decision Problem is also unsolvable. So again we run up
against a brick wall in trying to get to the heart of things by following
a set of rules.

Despite the pioneering work of Turing, which was carried out in
the latter half of the 1930s, it was really the work of Kurt Godel a few
years eatlier that applied the coup de grace to the idea that there was
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no difference that mattered between the real-world notion of a truth
and the formal-system concept of proof. So now let's turn to a
consideration of what Godel did and what it means for the hope of
understanding the world by following rules.

TRUTH IS STRANGER THAN PROOF

In his book Infinity and the Mind, mathematician and science-fiction
writer Rudy Rucker recounts his visit to a church in Rome outside of
which stands 2 huge stone disc. Carved onto this disc is the face of a
hairy, bearded man whose slot-shaped mouth is located about waist
Jevel. According to popular legend, God has decreed that anyone who
sticks their hand into the mouth and then utters a false statement will
never be able to pull their hand back out again. Rucker states that he
went to this church, stuck his hand into the mouth and said, “I will
not be able to pull my hand back out again.” Needless to say, Rucker
left Rome with all appendages intact. This story illustrates the logical
basis for why it will never be possible to produce a “universal truth
machine” capable of generating all possible real-world truths.

Suppose such a universal truth machine (UTM) indeed does exists.
Now feed the following statement S into the machine: “The UTM will
never print out this statement.” If the UTM ever does print out S, then
s will be false. So the UTM will have printed out a false statement.
But this is impossible since, by assumption, the UTM is supposed to
print out only true statements. Therefore, the UTM will never print out
S, implying that S is indeed a true statement. But now we have a true
statement that the UTM will never print out, contradicting the fact that
the machine is universal (i.e., that it will print out all true statements).
The perceptive reader will recognize the self-referential sentence S as
another version of the famous Epimenides paradox discussed in the
opening section of this chapter.

The punch line of the preceding argument is that truth is not finitely
describable. Perhaps it’s not too surprising that there’s no set of rules
sufficient to generate all possible real-world truths. After all, the rules
themselves exist within the world they are supposed to describe. So
it's a lirtle bit like pulling yourself up by your own bootstraps to ask
for a finite set of rules that will generate the infinity of all possible
real-world truths. What is surprising, however, is Godel’s proof that
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this same limitation holds for the much smaller and far less cluttered
world of the whole numbers. Here’s a brief outline of how Gédel
came to this astonishing conclusion.

Usually the alphabet of a formal system will include a symbol that
can be used to signify the idea of negation. We then call the system
consistent if a statement S and its negation are not both theorems of
the systt.em. It’s fairly natural to impose the requirement that a system
be consistent, since in practice a formal system is generally introduced
asa "Nay of summarizing a collection of factual statements about some
possible world. And there is no world in which a statement and its
negation can both be true facts.

GdFlel’s results apply to all formal systems that are (1) finitel
describable, (2) consistent and (3) rich enough to allow us to makZ
all possible statements about the relationship among the whole
r.xur.nbers. For such systems, Godel showed that there are two inherent
limitations, called Godel's First and Second Incompleteness Theorems

The First Incompleteness Theorem says that no formal system is.
capable of deciding every statement about numbers. This means that
for any formal system there exists a statement about the natural

numbers such that neither the statement nor its negation is a theorem
of the system. Thus, we have

Godel’s First Incompleteness Theorem—Formal Logic
Version: For every consistent formalization of arithmetic,

there exist arithmetic truths unprovable within that formal
system.

Remember that for a given mathematical structure like arithmetic, there
are an infinite number of ways we can choose a finite set of a;(ioms
and rules' of inference in an attempt to mirror syntactically the
mathematical truths of the structure. What Gédel’s result says is that
none of these choices will work. In short, there are no rules f
genefating all the truths about the natural numbers. >
Godel’s result is shown graphically in Figure 4.6 for a given formal
::'asttem M, where each 'poinF of the square represents a possible
s ement about the relationship among numbers (e.g., statements like
.The sum of two odd numbers is even” or “The square of every number
Is negative”). Some of these statements are true and others are false
We would like to use our formal system to show that all the trué
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FIGURE 4.6. GODEL'S FIRST INCOMPLETENESS THEOREM IN LOGIC SPACE

statements correspond to theorems, while none of false ones do.
Initially the square is colored entirely in gray. As we pro:: an
arithmetical statement true using the rules of the formal system M, we
color that statement white; if we prove the statement false, we color
it black. Godel’s First Incompleteness Theorem (henc‘eforth knov’/n
more compactly as Goédel’s Theorem) says that there vyxll always exllft
statements like G that are eternally doomed to a hfe'of gray; it 1i
impossible to eliminate the gray and color the square entirely in bla'c‘
and white. And this result holds for every possible formal systefn ,
provided only that the system is consistent. So, for every consistent
formal system M, there is at least one statement G that can pe seen t'o
be true. Yet G is not a theorem of M. As with ktlhe rest' of life, so it is
ith arithmetic: there’s no washing away the gray! .

toonzn?a; a statement like G undecidable since it can be nelth’;r
proved nor disproved within the framework of the form.al system " .
And if we add that undecidable statement G as an axiom, thgr;d;
creating 2 new formal system, the new system will have its own

senterzce G—unprovable, yet true.
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The general idea of the proof of this stunning result follows the
lines outlined above for the Universal Truth Machine. Using the
machine-formal-system equivalence, let Cy be the theorem-listing
machine that prints out all the theorems of M. Suppose G is the
statement “Cy will never print out this sentence.” As we've already
seen, it must be the case that G is a true sentence that will never be
printed by c"_

The difficult part of the proof is to show that G can be put into the
form of a statement about whole numbers. Gédel showed how to do
this by a tricky process called Gédel numbering. The details of how
this goes can be found in the material cited in the To Dig Deeper
section for this chapter. When all the smoke clears away, the
self-referential statement G, saying “M cannot prove G,” has been
transformed into a statement about whole numbers. More specifically,
the arithmetic version of the statement G asserts that a certain
polynomial equation has no integer solutions.

Given the equivalence between Turing machines and formal sys-
tems, it should come as no surprise to find that Godel’s Theorem has
a computer-theoretic counterpart. In fact, this counterpart is nothing
other than the by now familiar Halting Problem. So again we are led
to the same sad conclusion; namely, that there are inherent, irremov-
able limitations on how far we can go toward “computing” the truth
by following a set of rules.

Godel's Second Incompleteness Theorem addresses the matter of
consistency. Recall that the consistency of the system M can be stated
in plain English as “There is no statement about numbers that is both
true and false by the rules of M.” Again using Gédel numbering, Godel
showed how to transform this statement into a purely arithmetical
assertion involving the unsolvability of a certain polynomial equation,
The Second Incompleteness Theorem then states that the formal
system M is too weak to prove its own consistency.

The proof of the Second Incompleteness Theorem makes use of
the proof of the First Incompleteness Theorem. At the end of the day,
We manage to prove that the consistency of M implies the truth of the
Godel sentence G. But since we cannot prove G within M, it must
also be the case that M cannot prove its own consistency. Table 4.4
Summarizes the various steps in Gédel's road to incompleteness.

Godel's Incompleteness Theorems give the appearance of settling
once and for all the matter of generating truth from a set of rules. And
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TABLE 4.4, .
THE MAIN STEPS IN GODEL'S PROOF

Gadel Numbering: Development of a coding scheme to franslate ev;‘ry Iogicc:
”n H H "
formula in Principia Mathematicainto a “mirror-image” statement aboutthe natura

numbers.

U
Epimenides Paradox: Replace the nofion of truth by th.at of ,;I)royabillty, thereb.y
translating the Epimenides paradox into the assertion This statement is

unprovable.” "

Gadel Sentence: Show that the sentence “This statement is unprovable” has.an
arithmetical counterpart, its Godel sentence G, in every conceivable formalization

of arithmetic. v

Incompleteness: Prove that the Gédel sentence G must be true if the formal
system is consistent. '

No Escape Clause: Prove that even if addifional axioms are ad.d.ed fo Form a
new system in which G is provable, the new system with the additional axioms
will have its own unprovable Godel sentence.

U
Consistency: Construct an arithmetical statement asserting that ”arlthrpetlchls
consistent.” Prove that this arithmetical statement is not provable, 'rhus showing that
arithmetic as a formal system is too weak to prove its own consistency.

so they do—to a point. But less than fifty years after Godel pub.lished
his work, the editors of the Los Angeles Times noted an extension of
Godel's results that was so startling in its implications that th(?y were
moved to comment in their editorial of June 18, 1988 that t.hIS result
“makes the world shake just a little.” What kind of mathematxcgl result
could possibly send the general press into Sl'.lCh a state? Nothing less
than a proof that the structure of arithmetic 1Fself is random. 1 .hast;n
to point out that this does not mean that 2 + 2 is usually 4, occasionally
3.9 and every now and then 17. Rather, it means that there are perf'ectl.y
well-defined assertions about the integers whose truth or falsity is
forever beyond the bounds of rational thought to degde. So in
deciding what's what about such stateme'nts, there is no morle
systematic procedure than to toss a coin. While to examl'ne this result
would take us a bit too far off the track we are exploring here, the

THE LAWLESS 143

interested reader can find a complete account in the material cited in
the To Dig Deeper section. What does lie right in the center of our
path is the underlying basis of this shocking result—the concept of
the complexity of a number.

OUT-GODELNG GODEL

In the mid 1960s, Gregory Chaitin was enrolled in a computer-
programming course being given at Columbia University for bright
high-school students. At each lecture the professor would assign the
class an exercise whose solution required the writing of a program.
The students then competed among themselves to see who could
write the shortest program that solved the given problem. While this
spirit of competition no doubt added some spice to what were
probably rather dull programming exercises, Chaitin reports that no
one in the class could even begin to think of how to actually prove
that the weekly winner’s program was really the shortest possible.

Even after the course ended Chaitin continued pondering this
shortest-program puzzle, eventually seeing how to relate it to a
different question: how can we measure the complexity of a number?
Is there any way that we can objectively claim that & is more complex
than, say, V2 or 759? Chaitin’s answer to this question ultimately led
him to one of the most surprising and startling mathematical results
of recent times.

In 1965, now an undergraduate at the City University of New York,
Chaitin arrived at the bright idea of defining the complexity of a
number as the length of the shortest program that will cause a Turing
machine to print out the number. As it tums out, this concept of
complexity is intimately related to Gédel’s results.

Using the notion of the shortest program that will print out a given
number as a way to characterize the complexity of that number, we
can get a precise mathematical handle on the idea of a random, or
incompressible, number. We call a number random if there is no
program for calculating it whose length is shorter than the length of
the number itself. Expressed another way, a number is random if it is
maximally complex. Here, of course, we take the length of a number
to be the number of bits (digits) in its binary expression.
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But do random numbers really exist? The surprising fact is that
almost all numbers are random! The reason is exactly the same as why
almost all real numbers are uncomputable. To see this result, let's
compute the fraction of numbers of length # having complexity less
than, say, #—5. There areatmost 1+2+. .. + 2" =2"*_1 programs
of length at most n — 5. Consequently, there are at most this many
numbers of length n having complexity less than or equal to n — 5.
But there are a total of 2" binary numbers of length 7. Thus, the
proportion of these numbers having complexity no greater than 7 — 5
is at most (2" — 1)/2" < 1. So we see that less than one number in
sixteen can be described by a program whose length is at least five
digits less than the length of the number. Similarly, less than one
aumber in five hundred has a length ten or more greater than its
shortest program (i.e., its complexity). Using this kind of reasoning
and letting 7 — , it’s fairly easy to prove that the set of numbers with
complexity less than their length forms an infinitesimally small subset
of the set of all real numbers. Basically, there are too many real
aumbers and not enough Turing machine programs; almost every
number is of maximal complexity (i.e., random). Now let’s get back
to the problem of shortest programs.

The starting point for Chaitin’s remarkable results is the seemingly
innocent query “What is the smallest number that cannot be expressed
in a finite number of words?” This statement seems to pick out a
definite number. Let’s call it U for “unnameable.” But thinking about
things for a moment, we see that there appears to be something fishy
about this labeling. On the one hand, we seem 10 have just described
the number U in words. But U is supposed to be the first natural
number that cannot be described in words. It’s important to note here
that describing something and computing it are two completely
different matters. For example, it’s easy enough to describe a unicorn,
but it's something else again to write a program for' making one. This
description paradox, first suggested to Bertrand Russell by a certain
Mr. Berry, a Cambridge University librarian, plays the same role in
Chaitin’s thinking about the complexity of numbers and programs as
the Epimenides Paradox played in Godel’s work on the limitations of

formal systems.

Recall that to bypass the issue of formalizing truth, Godel had to
substitute a related notion, provability, and talk about a statement
being unprovable within a given formal system. Similarly, the Berry
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garadoyf contains its own unformalizable notion, the- concept of
C;gz@fnop be}tlween the terms in its statement and numbers. Part of
itin’s insight was to see that the wa i .

: . y around this obstacle was to
shift attention to the phrase “the smallest number not computable by
: pr?tgz‘@m of complexity ».” This phrase can be formalized, specifying
2 ;e'tinlrll Fomputer program for searching out such a number. What

ail iscovered was that no pro; i .

. gram of complexity # can ever
p;gduce a fnumber hz.wmg complexity greater than . Therefore, the
p g'ra}m of complexity n can never halt by outputting the nurilb
specified by Chaitin’s phrase. -

More generally, this result shows that even though there clearly
g{cltst Tr;xmbers of all levels of complexity, it’s impossible to prove this
f : at is, given any computer program, there always exist numbers

aving complexity greater than that program can recognize (i.e
fg-ne;ztec)i. I}? the words of Georgia Tech physicist Joseph Ford, .“X
1()0p nd theory can no more generate a 20-pound theorem than a
-pound .pregnant woman can birth a 200-pound child.” Speakin
solmelwhat informally, Chaitin’s Theorem says that no program carg1
calcu ate a pumber more complex than itself. The To Dig Deeper
section .outlmes the proof of this very fundamental result linkin
computing, complexity and information. s
nu’rInth r;nll\},)l.ltcatpq 011; Chaitin’s result is that for sufficiently large
, it cannot be proved that a particular stri
: ing has complexi
ir;:ater lt)l.mm N. E.quw.alently, a number N exists such that no nll)meZ
mgfjn 11r:Iary stlrlmlg is of length greater than N can be proved to be
. Nevertheless, we know that almost e i i
mally complex, hence rand j v that s axt
, om. We just can’t prove th ;
number is random. The i .
. problem is that each digit in a
' _The random
is;q:erg:e carries positive information since it cannot be predicted from
redecessors. Thus an infinite random i
information than all our fini s of logic wut togetis
inite human systems of logi
Hence verifying the rando s byt e
mness of such a sequence lies be
' ond the
f:)o:vvfiiz Zf constructtl)ve proof. Looking at the problem in anot¥1er way,
Own an arbitrarily long string requires th i l
rule for the entries of the stri . e = shor
tring. But then this rule is sh
suitably large sections of the stri e b o
string. So the strin ’
" ' ' g can’t be random,
Wi:: ?}IIL Asone mlg}.n suspect by now, this result is deeply intertwined
: e other. decision problems considered earlier.
o make this connection, consider a formal system whose axioms
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can be expressed in a binary string of length N. Chaitin’s Theorem
then says that there is a program of size N that does not halt—but we
cannot prove that fact within this axiomatic system. On the other hand,
this system can allow us to determine exactly which programs of size
less than N halt and which do not. So we have another way of proving
the undecidability of the Halting Problem, since the complexity results
state that there always exist programs for which we cannot determine
in advance whether or not they will stop. And, of course, Chaitin’s
Theorem offers another perspective on Gédel:

Godel's Theorem—Complexity Version There exist
numbers baving complexity greater than any theory of
mathematics can prove.

So if we have some theory of mathematics (i.e., a formal system),
there always exists a number ¢ such that our theory cannot prove that
there are numbers having complexity greater than ¢. Nevertheless, by
jumping outside the system (“jootsing”), we can clearly see that such
strings exist. To generate one, simply toss a coin a bit more than ¢
times, writing down a 1 when a head turns up and 2 0 for tails.

It's thought-provoking to consider the degree to which Chaitin’s
result imposes limitations on our knowledge about the world. Rudy
Rucker has made the following estimate: suppose K represents our
best present-day knowledge, while C denotes 2 universal Turing
machine whose reasoning powers equal those of the smartest and
cleverest of human beings (we’ll take up the existence of such a UTM
in the next section). Rucker then estimates the maximal complexity
number ¢ in Chaitin’s Theorem to be

t = complexity K + complexity C + 1 billion

where the last term is thrown in to account for the overhead in the
program of the machine C. Plugging some plausible numbers for K
and C into this expression, Rucker concludes that t is less than
3 billion. So if any worldly phenomenon generates observational data
having complexity greater than around 3 billion, no such machine C
(read: human) will be able to prove that there is some short program
(i.e., theory) explaining that phenomenon. Thus, appealing to the idea
of scientific theories as tools for reducing the arbitrariness in observa-
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tions, Chaitin’s work says that our scientific theories are basically
powerless to say anything about phenomena whose complexity is
mucb greater than about 3 billion. This does not mean that there is
no simple explanation for these phenomena. Rather, it means that we
- will never understand this “simple” explanation—it’s too complex for
us! Complexity 3 billion represents the outer limits to the powers of
human reasoning. Beyond that we enter the “twilight zone” where
reason and systematic analysis give way to intuition insight, feelings
hunches and just plain dumb luck. , , *
By now we've seen ample evidence of the equivalence between a
formal system of logic and a computer program. But there is yet
another equivalence between these two objects that bears directly on
- our eatlier discussions of dynamical systems and chaos in Chapter
. Three. .That is the equivalence between a computer program and a
dynamical system. Table 4.5 spells out the dictionary establishing that
the two are mirror images of each other.
’ Ifthere’s any message for mankind at all in these results of Godel
Turing and Chaitin, it’s that there is a forever unbridgeable gap’
. between what's true and what can be proved. So where do chaos and
« strange attractors fit into the overall scheme of things? Appealing to
~ the dictionary of Table 4.5, we can argue that the existence of chaotic
dynamical processes forms a natural link between Chaitin’s complexity
results and Godel’s Theorem. Moreover, the existence of a rich varie
of real-world truths that we can know for sure depends in an essentiz

TABLE 4.5.
THE DYNAMICAL SYSTEM-COMP
DICTIONARY TER PROGRAM
Dynamical System Program
Number field
: Tape symbols
g:o:: manifold All possible tape patterns
a
. A tape pattern
Cf{nstmmts Set of admissible tape patterns
Initial state Input tape pattern
¥e¢ftor field Program instructions
Arc1|ectory A sequence of tape patterns
tractor Tape pattern when the program
halts or goes into an infinite loop
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way upon the existence of such strange attractors. Here's the line of
argument supporting this claim.

We have seen that the theorems of a formal system, the output of
a UTM and the attractor set of a dynamical process are completely
equivalent; given one of these objects, it can be faithfully translated
into either of the others. But the idea of a provable real-world truth
coincides with the decoding of a theorem in a formal system.
Therefore, let’s employ the symbol T to represent the universe of trl%e
statements, while using P to denote the set of theorems provable in
some formal system. Of course, Gédel's Theorem states that under a
given interpretation, the set of provable theorems P is only a proper
subset of the set of true statements T. '

From the discussion on complexity, we saw that there exist
computable numbers of arbitrary complexity. Each of the§e comput-
able quantities corresponds to the attractor of some dynarr%lcal system.
Consequently, since there are an infinite number of strmgs. on the
attractor of these computable strings (one string for each digit in the
real number that the attractor corresponds to), there necessarily exist
dynamical systems whose attractor set is infinite. But fixed pomts‘ and
limit cycles are both attractors having only a finite number of strings.
Hence there must exist something “bigger.” But Chaitin’s Theorem
tells us that the attractor set must be smaller than the whole state
manifold since it asserts that there are strings that can never be
computed. In short, Chaitin’s Theorem implies the existen.ce of some
kind of attractor beyond a fixed point or a limit cycle. This can only
be a strange attractor.

Now let’s assume that such strange attractors exist. Since they do
not fill up the entire state manifold, there must exist states that cannot
be reached from any given initial state on the attractor. But .fro.m Fhe
equivalence of formal systems and dynamical systems, FhlS is just
another way of saying that P is a subset of 7. This relationship, of
course, is just a restatement of Godel's Theorem. Puttins these two
sets of arguments together, we have the chain of implications:

Chaitin’s Theorem => strange attractors => Godel’s Theorem
As the piece de résistance of our tour, we come to the perhaps

surprising fact that chaos implies truth, in the sense that a world
without strange attractors and, hence, without chaos would be very
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impoverished in the number of mathematical theorems that could be
proved. This conclusion, in turn, implies that whatever real-world
truths might exist, the overwhelming majority of them cannot be the
counterparts of theorems in any formal logical system. Of course from
this perspective we might already be living in such a world. But the
existence of strange attractors allows us to hold out the hope that the
gap between proof and truth can at least be narrowed—even if it can
never be completely closed.

Before leaving this discussion of dynamical systems and computing
machines, it’s worth a moment to consider what it is exactly about
computing machines that gives rise to things like the unsolvability of
the Halting Problem and uncomputable numbers. Basically, the
problem is the assumption that it takes a fixed, finite amount of time
to carry out a single step in a computation. For his idealized computer,
Turing assumed an infinite amount of memory. Mathematician Ian
Stewart, on the other hand, considers the Rapidly Accelerating Com-
puter (RAC), whose clock accelerates exponentially fast, with pulses
separated by intervals of %, ¥, & . . . seconds. So the RAC can cram
an infinite number of computational steps into a single second. Such
a machine would be a sight to behold as it would be totally indifferent
to the algorithmic complexity of any problem presented to it. On the
RAC, everything runs in bounded time.

The RAC can calculate the incalculable. For instance, it could easily
solve the Halting Problem by running a computation in accelerated
time and throwing a switch if and only if the program stops. Since the
entire procedure could be carried out in no more than one second,
we then only have to examine the switch to see if it’s been thrown.
The RAC could also prove or disprove famous mathematical puzzles
like Goldbach’s Conjecture (every even number greater than 2 is the
sum of two primes). What's even more impressive, the machine could
prove all possible theorems by running through every logically valid
chain of deduction from the axioms of set theory. And if we believe
in classical Newtonian mechanics, there’s not even a theoretical
obstacle in the path of actually building the RAC.

In Newton’s world, we could model the RAC by a classical
dynamical system involving a collection of interacting particles. One
way to do this, suggested by Z. Xia and J. Gerver, is to have the inner
workings of the machine carried out by ball bearings that speed up
exponentially. Because classical mechanics posits no upper limit on
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the velocities of such point particles, it’s possible to a?celemte Fim‘e .in
the equations of motion by simply reparameterizing it 50 tl.lat infinite
subjective time passes within a finite amount of ol?lectxve t@e. What
we end up with is a system of classical dynamical equations that
mimics the operations of the RAC. Thus, such a system can compute
the uncomputable and decide the unc}ecidable. ' '

Of course, just like Turing’s infinite-memory machine, thfa RAC is
impossible in the real world. The problem is that at the mtt}'r-gn'tty
level of real material objects like logical gates and integrated circuits,
there is a theoretical upper bound to the rate of information transfer
(i.e., velocities). As Einstein showed, no material object can gxceed
the velocity of light. Thus, there is no RAC and, hence, no devices to
complete the incompletable.

The fact that machines are limited in their ability to uncover the last
secret of the cosmos has not dampened the enthusiasm of many
scientists and philosophers for arguing that human beings are also in
some sense machines. And from this assumption it’s but a short-step
to the conjecture that there is no barrier in principle to con:lstructmg a
living, thinking being in plastic, copper and silicon. WhaF§ meant by
this is an entity that is genuinely alive and capable of cogmm'fe 'thou.ght
in just the same sense as our fellow men and women are dlstmgm?h—
able from cars, bacteria, stones and other objects that are n9t allye
and cognitively aware. Let's use some of our results al?out rationality
and mechanism to examine this wildly ambitious claim. But before
doing 50, a quick summary of the situation seems in order.

The results of Godel and Chaitin showed that we'll never get. atall
the truth by following rules; there’s always something out there in the
real world that resists being fenced in by a deductive argument.
Nevertheless, aficionados of algorithms believe that rulgs are enough
to duplicate both the cognitive and the material funct}onmg of human
beings. This can only mean that either (1) there is some way for
humans to escape the Godelian net or (2) humans are just not as
special as we'd like to believe. The remainder of the chapter looks at
these two possibilities.

REAL BRAINS, ARTIFICIAL MINDS

Boston University computer scientist Ed Fredkin likes to tell the
parable of a computer simulation he calls the Heaven Machine. It goes
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like this. One day you read an advertisement from the Heaven Machine
Corporation, offering you the opportunity to have an exact copy of
your brain states loaded into a gigantic computer simulation. If you
accept the company’s offer, however, the duplication process destroys
your original brain, at which point your life on Earth is unfortunately
over. By way of compensation, though, the Heaven Machine Company
promises you eternal life within the machine. Further, they claim that
this life in the machine is nothing short of heavenly.

Because you look pretty skeptical about the whole business, the
HMC salesman offers to let you talk the matter over with Joe, your
neighbor who recently signed up with the company and had his brain
duplicated in the machine. So they take you into a room with a huge
computer screen, which initially is pretty fuzzy, but after a while the
picture comes into focus, and you see your neighbor. “Hi there, Joe,”
you say. “What's happening?” Joe replies, “Life is fantastic. Everything
is just heavenly up here. You wouldn't believe some of the conversa-
tions I've had lately. There are so many amazing people to talk
with—Aristotle, Newton, Buddha. And when I'm not trading ideas
with these guys, I play a lot of golf, sun myself on the beach and, in
general, relax and enjoy all the things I always wanted to do but never
had the time for when I lived next door to you. And the social life!
My datebook looks like a dentist's calendar. It's enough to make
Warren Beatty look like a fumbling teenager. Believe me when I tell
you it’s like I died and went to heaven.” Hearing all this you think,
that's my old pal Joe, all right. No question about that!

So is this a genuine heaven-on-Earth machine or just a nightmarish
fantasy? Is it even remotely plausible that by running a computer
program—by following a mere set of rules—it would be possible to
capture the essence of what it means to be Joe? Or me? Or you? While
it's far from apparent on the surface, this query is only a special case
of the more general Big Question that we’'ve been leading up to
throughout this chapter: Is every observable real-world phenomenon
just the result of following a simple set of rules? Put more prosaically,
is the universe itself just one big computer?

In 1950, Alan Turing published the paper “Computing Machinery
and Intelligence,” which sparked off a debate that rages to this day
over the question Can a machine think? In addition to its pivotal role
in drawing attention to the matter of machine intelligence, Turing’s
Paper was notable for its introduction of an operational test for
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deciding whether or not a machine really was thinking—human style.
This criterion, now termed the Turing test, is unabashedly behavioristic
in nature, involving the machine’s fooling a human interrogator into
thinking it is actually a human. Turing’s rationale for proposing what
he called the Imitation Game was that the only way we have for
deciding whether or not other humans are thinking is to observe their
behavior. And if this criterion is good enough to decide if humans are
thinking, then fairness to machines dictates that we should apply the
same criterion to them.

On November 8, 1991 the Boston Computer Museum held the
world’s first hands-on Turing test, in which eight programs conversed
with human inquisitors on a restricted range of topics that included
women’s clothing, romantic relationships and Burgundy wine. At the
day’s end, the judges awarded first prize to a program called PC
Therapist IIl, which was designed to engage its questioner in a
whimsical conversation about nothing in particular. For example, at
one point the program suggested to a judge, “Perhaps you're not
getting enough affection from your partner in the relationship.” The
judge replied, “What are the key elements that are important in
relationships in order to prevent conflict or problems?” “I think you
don’t think I think,” responded the machine.

This kind of interchange did little to fool the judges, most of whom
said they were able to spot the mistakes, rooted in a lack of everyday
common sense, that immediately singled out the computer programs
from the humans. Nevertheless, the overall conclusion from this
historic experiment was that perhaps the Turing test isn’t as difficult
as many people originally thought, since even the primitive programs
in this contest managed to fool some of the judges most of the time.
Of course, we should keep in mind that this wasn’t a true Turing test,
since the domains of discourse were severely restricted. But it was still
a pretty good initial approximation.

A telling argument against the adequacy of the Turing test as 2
benchmark of intelligence has been advanced by philosopher Ned
Block. Suppose, he argues, that we write down a tree structure in
which every possible conversation of less than five hours’ duration is
explicitly mapped out. This structure would clearly be enormous,
much larger than any existing computer could store. But for the sake
of argument, let’s ignore this difficulty.
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]:’,y following this tree structure, the machine would interact with
its interrogator in a way indistinguishable from the way an intelligent
human being would do so. Yet the machine would simply make its
way through this tree, which strongly suggests that the machine has
no mental states at all. And this same conclusion holds for any
conversation of finite duration.

From this argument, Block draws the moral that thinking is not fully
captured by the Turing test. What's wrong with the tree structure is
not the behaviors it produces but the way it produces them. Intelli-
gence is not just the ability to answer questions in a manner indistin-
guishable from that of an intelligent person; to call a behavior
intelligent is to make a statement about how that behavior is produced.

It's clear that the Turing test represents a third-party perspective on
human intelligence. Standing outside the system, the test is designed
to discern human intelligence in a machine by observing only the
behavioral output of the machine. The Turing test says nothing about

the internal constitution of the machine, how its program is structured

the architecture of the processing unit or its material composition. In

- Turing’s view of intelligence, only behavior counts. And if you have

the “right stuff,” then you are a thinking machine.
In 1989, theoretical physicist Roger Penrose published The Em-

' peror’s New Mind, a book whose central argument is that the human

mind is capable of transcending rational thought, hence can never be
d\{pllcated in a machine. Before going on, let me note that we are
using the term rational thought in the strong sense of following rules

~or an algorithm to arrive at a result by a process of logical inference.

There is no connection here with the everyday economic interpreta-

- tion of rationality as relating to self-interest or prudent action. Pen-

rose’s message, which he justified by a wildly speculative appeal to
quan.tum processes in the human brain as the basis of consciousness
and intelligence, was a great source of comfort, I'm sure, to many

computerphobes and other anti-artificial intelligence types, a fact that
' doubt.less goes a long way toward explaining the presence of such a
* technical book on the best-seller lists for months on end. Be that as

It may, Penrose’s anti-Al argument comes down to the claim that the

~ human mind is somehow bigger than rational thought.

A key ingredient in Penrose’s argument is Godel's famous result
showing that there are true statements of arithmetic that the human
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mind can know but that cannot be the end result of following a fixed
set of rules (i.e., a computer program). While there are well-known
reasons why Godel’s Theorem should be regarded skeptically when
it comes to using it as an argument against thinking machines, for our
purposes here what’s important about Godel’s result is that it suggest
there are limits to the rational powers of the human mind. The big
question for mechanists then becomes Can these limits be removed,
or at least extended? As a prologue to confronting this issue head-on,
let me first outline briefly the basic positions today of both the pro-
and anti-Al camps. For more details on these competing schools of
thought, the reader is invited to consult the general accounts, as erll
as the more specialized discussions, cited in the To Dig Deeper section
for this chapter.

Pro-AI

As a rough classification, the pro-Al world is divided into two basic
schools: Top Down and Bottom Up. The first sees the basic hardware
of the brain as irrelevant to the issue of duplicating human intelligence
in a computing machine. Consequently, Top Down attempts to
capture what the brain does center upon trying to extract the rules
that the brain uses and then coding these rules in a form congenial to
computing machines.

Bottom Uppers, on the other hand, argue that perhaps the way our
particular human type of brain is physically constituted plays a cruc.lal
role in our cognitive abilities. If so, the argument goes, thejn it's
impossible to capture cognition—human style—in a machine without
respecting this physical structure. Thus, these so-called New Connec-
tionists focus their attempts to mimic the mind in a machine on
constructing programs whose functional organization mirrors as
closely as possible that of the human brain. Now by way of prelude
to consideration of the “minds as machines” problem, let me take a
longer look at the details of these two very different approaches to
the problem of capturing human thought in a machine. First, the Top
Downer’s view of the world.

The key words in the Top Down vocabulary are representations
and rules. Since the time of the very first Top Down program—the
General Problem Solver created by Herbert Simon, Alan Newell and
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Cliff Shaw in the 1950s—the twin problems confronting these research
efforts have revolved about how knowledge is to be represented in
symbols and what rules should be used to combine these symbol
strings into new, cognitively meaningful strings. This description
makes it clear, I think, that the research manifesto of the Top Down
view of Al has no place in it for the actual neurophysiological
hardware of a real brain. Rather, the time and energy of Top Down
researchers is devoted to a search for clever representation schemes
and what might be called the “rules of thought.” In short, these
research agendas are focused on skimming off the symbolic repre-
sentation schemes and rules of thought used by the brain, ignoring
totally the brain’s actual hardware. This line of investigation has been
divided by the Top Downers’ archenemies Hubert and Stuart Dreyfus
into three rather distinct phases:

¢ Representation and search (1955-1965)—During this period
work centered on showing how a computer can solve certain classes
of problems using the general heuristic search technique termed
means-end analysis. This involves making use of any available
operation that reduces the distance between the current state of the
system and the description of the desired goal. Simon and Newell
made extensive use of these ideas, abstracting the heuristic technique
for incorporation into their General Problem Solver.

* Microworlds (1965-1975)—Early on, the Top Down approach
scored some seemingly impressive victories, especially in severely
restricted areas like geometric theorem-proving, chess-playing and
other areas in which problems could be solved with the combination
of a large amount of formal logical manipulations and a minimal
amount of real-world background knowledge. Unfortunately, it soon
became clear that most everyday human problem-solving did not
involve problems with this happy conjunction of features. Experience
with language translation by machine brought out especially clearly
the fact that most human cognition involves a considerable amount
of background knowledge about the world, what many have termed
“tacit knowledge.” For example, one Russian-English translation pro-
gram translated the English idiomatic phrase “out of sight, out of mind”
into the Russian equivalent of “blind and insane.” With these kinds of
problems emerging at an ever-increasing rate as researchers tried to
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create programs for practical, everyday tasks, the question for Top
Downers became how to account for the necessary background
knowledge in their rules and representations.

One early attempt was a kind of Al version of the age-old
Procrustean fit. Namely, create an artificial world inside the machine,
a world about which the machine has complete knowledge. Of course,
these artificial worlds or, as they came to be termed, microworlds, are
vastly slimmed-down versions of the real thing. But the hope was that
by abstracting those features of the real world deemed important for
a given task, the machine could then be given enough background
information to be able to think intelligently about objects and rela-
tionships in these scaled-down, fake worlds.

An early example of this artificial worlds approach to Al was Terry
Winograd’s SHRDLU, a microworld consisting of simulated three-
dimensional objects like blocks, pyramids and spheres of different
colors. The computer was given all the relevant information about the
properties of these objects, after which instructions would be given
by the operator, telling the machine to perform certain operations on
these objects. A typical instruction might be something like “Pick up
the blue block and place it on top of the red sphere.” Knowing the
properties of blocks and spheres, the computer might then respond
that it couldn't carry out the order since a square block cannot sit
stably atop a sphere.

The hope was that these microworlds could be gradually made
more realistic and combined with other microworlds so as to approach
real-world understanding. Although these kinds of efforts yielded
some limited successes, it soon became evident that the whole
research program was based upon a crucial misunderstanding—of the
difference between a universe and a world. Thinking of things like
the world of business or the world of science shows that a world is an
organized body of objects, purposes, facts, skills and practices that
give meaning to human activities. On the other hand, a set of
interrelated facts can constitute a universe without being a world. The
difference becomes apparent by considering the meaningless physi-
cal universe and the meaningful world of pbysics. Unfortunately,
microworlds are not worlds but isolated, meaningless domains. And
it gradually became evident that there was no way such domains could
be combined and extended to encompass the many worlds of daily
life.
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o Commonsense knowledge (1975-present)The first two periods
of Top Down Al were characterized by efforts aimed at seeing how
much could be done with as little knowledge as possible. But the
commonsense-knowledge problem could not be swept under the rug
forever. The obvious next step was to try to introduce data structures
for stereotyped situations as a way to incorporate everyday, taken-for-
granted knowledge into computer programs. But with the failure of
approaches like Marvin Minsky's “frames” and Roger Schank’s
“scripts,” it finally became clear that a radically new approach was
needed. It was time to give up on the conviction of Descartes and the
early Wittgenstein that the only way to produce intelligent behavior
is to mirror the world with a formal theory in the mind. At this point,
classical Top Down, symbol-based Al became an example of what
Imré Lakatos has called a “degenerating research program.” Enter the
Bottom Up view of the world.

Looking at the brain from the other end of the telescope, Bottom Up
proponents argue that the physical hardware of the brain—or at least
its general architecture—does matter when it comes to human cogni-
tion. And if we're to have any hope of duplicating that kind of
intelligence in a machine, it behooves us to explicitly account for the
organizational structure of that hardware in our programs. What this
means is that we need to take an “insider’s” perspective, looking at
how the brain is wired and how that wiring serves to generate the
kind of observable behavior we label intelligent.

Here are a handful of features that just about every neurophysiolo-
gist and connectionist agrees are characteristic aspects of the human
brain:

* Simple processors—Most of the work of the brain is done by an
unimaginably large number of neurons, each of which, taken by itself,
can be regarded abstractly as an ultraprimitive computer, not much
more complicated than a simple ON-OFF switch.

* Massive parallelism—The 10 billion or so neurons of the brain
are connected via a network of dendrites, axons and synapses,
resulting in concurrent operation of the neurons. Here the dendrites
correspond to the neuron’s input channels, while the axons are the
outputs. The synapses can then be thought of as a kind of volume
control mediating between the inputs and outputs.
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if only a part of one of the target patterns is shown, the net still might
be able to recognize it. Moreover, performance of the net degrades
gradually as individual neurons “misfire,” or are removed from the
net. The network can also recognize novelty, in the sense that patterns
having features in common with the target patterns can be recognized,
even when they are not part of the training set. All in all, a Bottom
Up neural net represents a view of the world that is theory-free,
suggesting that it is possible to behave intelligently in the world
without having an a priori theory of that world. But how much of
everyday intelligent behavior can such a network be expected to
capture? Are there any limits on what a well-trained network is capable
of? As it turns out, the Bottom Up connectionist program is itself not
totally free from that bugaboo of the Al business, the commonsense-
knowledge problem.

All neural net modelers agree that in order for a net to be intelligent
it must be able to generalize. This means that if the net is given a large
enough set of examples of inputs associated with a particular output,
it should respond to further inputs of the same type with that particular
output. The problem, of course, lies in the determination of what
constitutes an input of “the same type.” In practice, the designer of
the net has a notion of “type” in mind, and counts it a success if the
net can generalize to other instances of this class.

There are two difficulties here. The first is the fact that the
boundaries separating classes of patterns is set in advance by the net’s
designer. Thus, the possibility for novel forms of behavior, which is
clearly part of what we call human intelligence, is severely restricted.
The second problem arises when the net produces an unexpected
response to a given input. Can we really say then that the net has
failed to generalize? Perhaps the net has been acting all along on a
different idea of type, and this unexpected association has just
revealed that difference.

In light of these difficulties, we might conclude that in order for a
neural net to share our human sense of generalization, it must also
share the size, connective structure and initial configuration of the
brain. Moreover, it must share our idea of what constitutes an
appropsiate output, suggesting that it must share our experiences,
needs, desires and emotions, as well as have a humanlike body with
appropriate physical abilities for movement, sensory inputs and the
like. If this indeed tums out to be the case, then the Bottom Up
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program will founder on exactly the same shoals as the Top Down-
ers—the reef of commonsense knowledge. To quote Hubert and Stuart
Dreyfus, “If the minimum unit of analysis is that of a whole organism
geared into a whole cultural world, neural nets as well as symbolically
programmed computers still have a very long way to go.”

The one thing that both Top Down and Bottom Up devotees agree
on is the claim that there is no obstacle in principle to the duplication
of human cognitive capacity in a machine. The point of dispute is only
how to go about doing it. But an impressive array of arguments have
been marshaled against the very idea of such “strong AL” So let’s now

give the floor over to those adhering to the view that machines will
never think like you and me.

Anti-Al

While the majority of Al advocates are computer écientists, psycholo-
gists, mathematicians and others of that ilk, most of the arguments
against Al have been put forward by philosophers. Their outbursts
against the very idea of strong Al seem to be based on one of three
main lines of attack: phenomenology, antibehaviorism or Gédel’s Theo-
rem. Let me spend a page or two describing these counterarguments.

* Phenomenology—One of the most popular spokesmen for the
anti-Al cause has been Hubert Dreyfus, a philosopher at the University
of California at Berkeley. Dreyfus, along with his brother Stuart, a
professor of engineering who's also at Berkeley, argues against t,he
possibility of strong Al by appealing to the works of the pheno-
meno.logical philosophers Martin Heidegger, Edmund Husserl and
Maurlce Merlau-Ponty. These giants of modern Continental philoso-
phy claim that there are many human cognitive activities that simply
€annot be thought of as the end result of the following of a set of
rules. A favorite example of the Brothers Dreyfus in this regard
involves learning how to drive an automobile.

According to the Dreyfuses, gaining expertise at driving a car
involves a successive passage through five identifiable stages:

1. N(?\Tice: At this lowest skill level, context-free rules for good
driving are acquired. Thus, one leamns at what speed to shift gears
and at what distance it’s safe to follow another car at a given
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speed. Such rules ignore context-sensitive features such as traffic
density and weather conditions.

2. Advanced beginner: Through practical on-the-road experience,
the novice driver learns to recognize concrete situations that
cannot be described by an instructor in objective, context-free
terms. For instance, the advanced beginning driver learns to use
engine sounds as well as context-free speed as a guide for when
to shift gears, and learns to distinguish the erratic behavior of a
drunk driver from the impatient actions of an aggressive driver in
a hurry.

3. Competence: The competent driver begins to superimpose an
overall driving strategy upon the general rule-following behavior
of the novice and the advanced beginner. He or she is no longer
merely following rules that permit safe and courteous operation
of the car, but drives with a goal in mind. To achieve this goal,
the competent driver may now follow more closely than normal,
drive faster than is allowed or in other ways depart from the fixed
rules learned earlier.

4. Proficiency: At the previous levels, all decisions were made on
the basis of deliberative, conscious choices. But the proficient
driver goes one step further and makes decisions on the basis of
a feel for the situation. There is no deliberation; things just
happen. So, for example, the proficient driver when attempting to
change lanes on a busy freeway may instinctively realize that
there’s another car coming up on the blind side and delay
making a move. This instinctive reaction may arise out of
memories of past experience in similar situations, although it may
appear as an unexplainable lucky guess to an outside observer.
Somehow there is a spontaneous understanding, or “seeing,” of a

plan or strategy.

5. Expert: An expert driver no longer sees driving as a sequence of
problems to solve, nor does he or she worry about the future and
devise plans. Such a driver becomes one with the car and has the
experience of simply driving rather than driving a car. Thus, an

- expert driver has an intuitive understanding of what to do in a
given setting. He or she doesn't solve problems and doesn’t make
decisions but just does what normally works.

The moral of this fable in five parts is that there is more to intelligence
and expertise than mere calculative rationality. Expertise doesn’t
necessarily involve inference; the expert sees what to do without
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applying rules. This is the essence of the Dreyfus argument against
the possibility of a rule-based program’s ever achieving anything that
remotely approximates genuine human intelligence.

I think it’s clear from this example that the Dreyfus position against
strong Al is essentially a third-person, “outside-the-system” argument
against rule-based actions. The claim is that simply by looking at the
‘external behavior of a human being, we can see cognitive activity that
cannot be attributed to following a set of rules. The Dreyfuses then
claim that it's impossible to program a computer to drive a car in a
manner indistinguishable from an expert human driver, since the
computer would have to have a set of rules to do such a task. But
there are no such high-level rules that human drivers follow in guiding
their vehicles through rush-hour congestion and high-speed freeway
traffic. And since machines can only follow the rules encoded into
their programs, the full experience of even such a relatively simple
human task as driving a car cannot be captured within the confines
of a computer program. Ergo, machines cannot think—at least not like
you and me.

As an aside, it's of some significance here to note that Hubert
Dreyfus admitted to me in a private conversation recently that the
main thrust of his anti-Al argument is directed against the Top Down
approach to strong Al, and that it may well be possible to duplicate
human capacity in driving and everything else by following a Bottom
Up approach. But even this approach may be stymied by the same
commonsense-knowledge barrier already noted above. Now let’s pass
on to consideration of another class of reasons why machines will
never think.

* Antibebaviorism—One of the strongest arguments yet launched
by the philosophers against strong Al is that given by John Searle, also
a professor of philosophy at Berkeley. Searle’s argument is essentially
a first-person, “inside-the-system” claim that what goes on within a
computing machine when it moves symbolic representations around
in accordance with a program is pure syntax. But, Searle argues, no
amount of syntax alone (i.e., symbol shuffling) can ever give rise to
semantics. In other words, the computer can have no understanding
of the meaning of the symbols it manipulates. And without meaning
there is no intelligence.
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To dramatize this first-person point of view on thinking, Searle
constructed the colorful analogy now called the Chinese Room
argument. This involves imagining someone ignorant of Chinese being
locked up in a room with a dictionary containing only Chinese
ideographs. The room also contains a set of cards, each of which has
a Chinese character printed on it. The person receives similar cards
with Chinese characters through a slot in the door to the room. He or
she then looks up the character on the card in the dictionary, passing
back out through the slot the card containing the character called for
by what's found in the dictionary listing.

It's clear that from the perspective of the person in the room, there
is no understanding of Chinese here at all Gi.e., there is no semantics).
There is only a purely syntactic shuffling of cards back and forth
through the slot in accordance with rules dictated by the dictionary.
But from the third-person, essentially behaviorist perspective of a
native Chinese speaker standing outside the room, the sequence of
cards going in and out of the slot may well be seen as a perfectly
sensible dialogue in Chinese about, say, tomorrow’s weather, the state
of the stock market or the end of the world. Searle’s point here is that
the actions of the person in the room duplicate exactly what happens

_inside a computer as it goes about its business of transforming one

set of symbol strings into another.

When Searle first published this anti-Al argument in 1980, the howls
of outrage from the pro-Al community could be heard from Stanford
to MIT and back again. Here is just a small telegraphic sampling of
the kinds of rebuttals offered against Searle’s gedanken experiment.

Systems Reply: The essence of this rejoinder is to move the
problem up to another level. While it’s true that the person inside the
Chinese Room doesn’t understand the story, that person is merely a
part of a whole system. And the system does understand the conver-
sation. Thus, understanding is now ascribed to an overall system of
which the person inside the room (ie., the computers central
processor) is only a part.

The Brain Simulator: This reply involves imagining a program
that simulates the sequence of neuron firings at the synapses of the
brain of a Chinese speaker when understanding questions in Chinese
and giving appropriate responses. Here the argument revolves around
the claim that since the program is a perfect simulation of what's going
on inside the brain of the Chinese speaker at the level of the synapses,
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ei‘ther both the program and the native speaker understand the
dialogue or they both don’t. So what could be different about the
program of the computer and the program of the Chinese brain?
(?ther Minds: In this case the argument is essentially that of the
Turing tejst. How do we know that other people understand Chinese
or anyt.hmg else? Answer: Only by their behavior. But the person in
the Chinese Room passes a behavioral test like a native Chinese
speaker. So if you're going to attribute cognitive understanding to

other people, you must also attribute i
, ute it to a computer that can
the same behavioral tests. P P

Several other lines of attack have also been leveled against the Chinese
Roorln experiment. For Searle’s response to these quibbles, and more
details of the arguments themselves, the reader should c,onsult the
peer comenmw accompanying the original article, which is cited in
thc; To Dig Deeper section for this chapter. On this inconclusive note
let’s move on to our final class of anti-Al claims, those resting on ar;
appeal to Godel’s First Incompleteness Theorem.

. Gdc{el s theorem—One of the most influential arguments against
the possibility of strong Al was advanced in 1961 by Oxford philoso-
p'her John Lucas, who appealed to Godel’s result saying, in effect, that
since there exist arithmetical truths that we humans can’see to be, true
but that a machine cannot prove, the capacity of the human mind
must transcend that of any machine. As noted earlier, Roger Penrose
another Oxford don, recently appealed to much the same line o%
argument to also conclude that machines cannot think like humans
Penrose adds a twist to the usual Godelian line by speculating that aé
least some part of human thought involves making contact with
ur?computable quantities. And the best way he can explain how this
rmg'ht come about is by invoking mysterious quantum events influ-
encing the brain’s neuronal firing patterns.

F‘or over thirty years now, the arguments have raged hot and hea
against these Godelian arguments against strong Al and I don’t wa‘:l};
to bore. the reader by going into them again here. They can all be
'found in many places. Let it suffice to say that Godel's theorem
lr.lvolves certain hypotheses, most importantly that the formal system
(1.f:., computer program) be logically consistent. It's rather clear, I
think, that satisfaction of this condition by the human mind is, a
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dubious assumption at best. I'm sure we can all remember instances
when we behaved in a demonstrably inconsistent manner. And if the
system is logically inconsistent, all bets are off as far as appeals to
Godel's result are concerned.

With all these arguments casting doubt on the feasibility of both
the Top Down and Bottom Up programs for strong Al .is it feall,y
plausible that we'll ever be able to design a brain? After all, Godel’s
result tells us that there are limits to what we can do by way of
rationally planning anything. So perhaps both the symbol-processing
and connectionist exercises are doomed to failure from the very outset.
Maybe the brain is just too complex for us to ever fully undefrstanfi,
thus precluding our being able to design a machine to d}lphcate it.
Maybe. But even if this does turn out to be the case, all is not lost.
. Let's see why.

MINDS, MACHINES AND EVOLUTION

On January 3, 1990, Tom Ray, a naturalist from the University' of
Delaware, pushed the start button on his computer, kicking i.nto action
a program called Tierra. After letting the program run all night, th.lt
Ray found in his machine the next moming was an electronic
ecosystem of dazzling diversity—populations of many different types
of organisms, all of which descended from a single ancestral organism
that Ray had inserted into the program to get it started. As Ray stated,
“From the most basic instructions there emerged an astonishing
complexity.” Such are the powers of evolution.

The Tierra simulator is an attempt to mimic some important aspects
of Darwinian evolution in a machine. The organisms in this electronic
ecosystem are self-reproducing strings of programming-langu.age
code. Each of these programs competes against the others for slices
of the computer’s processing time, as well as for memory locations in
the machine, much as different organisms compete for an ecosystem’s
physical territory and food supply. So there is no a priori cr,ite'rion
imposed from the outside as to what is a “fit” organism. What s fit or
unfit changes over time, depending upon how the organisms in the
“soup” mutate, recombine and, in general, evolve so as to lane as
many copies of themselves in the machine as possible. For details of
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the many clever ways Ray developed to ensure that a population of
his “critters” captures characteristic features of a real ecosystem, the
reader is referred to Ray’s account of the whole experiment cited in
the To Dig Deeper section.

The Tierra exercise was the first ever to demonstrate definitively
that the process of evolution is independent of a particular material
substrate. It can take place just as easily among a population of
computer programs competing for memory space in a machine as it
can among populations of carbon-based organisms competing to
survive in an earthly environment. So why couldn’t it happen in a
population of machines?

Interestingly enough, this evolutionary argument seemed to be the
position favored by Godel himself, when asked whether his theorem
posed an insurmountable barrier to the development of a true
mechanical intelligence. The following reply seems to represent the
sum total of Gédel’s published words on the problem of strong Al:

. it remains possible that there may exist (and even be
empirically discoverable) a theorem-proving machine which in
fact is equivalent in mathematical intuition [to the human mind],
but cannot be proved to be so, nor even be proved to yield only
correct theorems of finitary number theory.

By this remark, Godel is suggesting that a machine equivalent in
brainpower to the human mind might actually be created (e.g., by
evolution). But if such a device did exist, Gédel's claim is that we
would never understand it. It would be too complex for us.

So the Gédelian prescription is not to build a brain, but rather to

i grow one! And Ray’s experiment shows that there’s no logical barrier

to following this dictum. What both Gédel and Ray are saying, in
effect, is that a machine equal to a human in cognitive capacity will
be just an example, albeit a very special one, of what we can call
antificial life (A-life). Since this entire theme of “living machines” has
become a hot topic of late, let me conclude this chapter by exploring
a few of the striking parallels between the research agendas of the
Alers and the A-lifers. Perhaps the best way to get started is by listing
and commenting upon the following set of hypotheses underpinning
belief in the existence of A-life, as put forth by Steen Rasmussen of
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the Los Alamos National Laboratory and the Santa Fe Institute, one of
the principal players in the A-life game.

Postulate 1: A universal Turing machine can simulate any physi-
cal process. The content of this assumption is that the information-
processing rules of any physical process can be mimicked by a suitably
programmed computer. In short, the Turing-Church Thesis is true for
physical systems.

Interestingly enough, this is exactly the assumption that Roger
Penrose has called into question in his treatment of strong Al An
important part of Penrose’s anti-Al argument is that the brain has ways
of information-processing that transcend computability as charac-
terized by a universal Turing machine. On the other hand, weakening
this postulate to the statement that all human cognitive activity is
computable yields the assumption that sustains the belief of pro-Al
researchers in the ultimate success of their strong Al research pro-
grams.

Postulate 2: Life is a physical process. The crucial point here is the
claim that life is a consequence of the functional organization of the
different parts of a system, and that these functional aspects can be
carried out in many different types of physical hardware. In particular,
the relevant functional activities giving rise to life can comfortably be
carried on within the confines of a computing machine.

Substituting the word cognition for the word life in the above
statement leads to the functionalist position on strong Al So if you're
a believer in either Top Down or Bottom Up Al there is nothing about
thinking that transcends ordinary neurophysiological processes in the
brain. Human thought then becomes a consequence of how the
physical components of the brain are organized and does not involve
the exact details of any particular type of hardware. Of course,
connectionists hold that the wiring pattern linking the brain’s neurons
is important, but that that pattern can be duplicated in many distinct
sorts of actual hardware—including a digital computer.

Postulate 3: There are criteria by which we can distinguish
between living and nonliving systems. While all presently known
conditions for life seem rather fuzzy, this postulate asserts that
agreement can in principle be reached as to what is and isn't alive. In
particular, all living systems should include the functional activities of
metabolism, self-repair and replication. ‘
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In the Al context, this postulate gives rise to things like the Turing
Test and Chinese Room arguments. How do we know someone is
thinking? How do we know something is alive? In both cases there
seem to be pretty strongly held intuitive ideas enabling us to say, in
effect, “I know it when I see it.” But the fur starts to fly when it corr’les
to giving an explicit set of criteria that apply in all cases.

Postulate 4: An artificial organism must perceive a reality R*
which for it is just as real as the “real” reality R is for us. An imponan’t
consequence of this assumption is

Postulate 5: The realities R* and R bave the same ontological
status. In other words, what we call reality is no more or less real to
us than the reality seen by an artificial organism in a machine. So in
a simulated rainstorm in the artificial reality, an artificial dog reall
does get wet. Y

Acceptance of these last two assumptions in either the Al or A-life
worlds leads immediately to a plethora of issues surrounding “rights”
for machines. If a genuine thinking machine has the same ontological
status as a thinking human, then it’s hard to see why we should not
give such a device the same civil rights we accord to a human. Or so
goes the argument, anyway. .

Postulate 6: We can learn about the fundamental properties of
our reality R by studying the details of different R*. This means that

looking at what artificial life does inside a machine can give us insight
into what our human form of life is doing outside the computer.

This postulate is the raison detre for the entire A-life and Al
undertakings. If we accept the machine version of neurons, thoughts
!anguage or whatever as a valid representation of that sarr;e Concep;
in R,. it follows then that the machine-world version and the real-world
version are isomorphic, or functionally equivalent, and whatever you
learn from the study of one can be transferred to the other, mutatis
mutandis. For example, this line of reasoning is what supp(;rts most
of the interest in Tom Ray’s Tierra simulator as a way of studyin
evolutionary processes. ¢
. So we come to the conclusion that if you want to study intelligence
fn a machine, it might be a smart move initially to shift attention from
intelligence to life itself. If you can create life in a computer, then

¥ intelligence will almost assuredly follow.

As a final dollop of speculation, it's not hard to extrapolate the
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foregoing picture to its logical end in which machines evolve to the
point where they are no longer interested in us lowly humans. Let’s
sketch one possible scenario for how this might happen.

Imagine setting a few thousand robots loose on the Moon, their
prime directive being to mine, smelt, fabricate and assemble the
materials necessary to build copies of themselves. These robots find
the Moon a congenial place. Its low temperatures, abundant solar
energy, lack of corrosive water vapor Ot gaseous oxygen and the
abundance of silicon are just what the robots need to be fruitful and
multiply.

If these robots are programmed to place high priority on self-
reproduction, there will inevitably be competition for the raw materials
and finished supplies. Such competition, in turn, leads to natural
selection. In addition, we can ensure that the robot programs undergo
regular mutation. For example, we could place an instruction in the
ancestral program containing the imperative never to copy itself
exactly. So each time a program is transferred, a substantial number
of changes is made in it, changes that are determined randomly by,
for example, waving a powerful magnet over the new robot’s head
or bombarding it with high-intensity X rays.

Soon the programs for these robots will become as incomprehen-
sible to us as the mysterious statues on Easter Island or the indeci-
pherable scribbles on the Voynich manuscript, and we can expect to
find a large and autonomous robot civilization developing on the
Moon. Who knows, perhaps some of the robots there will interest
themselves in mathematics. At exactly this point, Godel's theorem-
proving machine, whose abilities equal the resources of human
mathematical intuition, could come into existence.

On this perhaps unsettling note, we conclude our discussion of why
forming our expectations of the ways and whys of the world by
computation will always leave the door open to unanticipated events
(i.e., surprises). It's just not possible to get it all by following a set of
rules.

FIVE

THE IRREDUCIBLE

Intuition: Complicated
systems can always be
understood by breaking

them down into simpler parts.

The whole is more than the sum of the parts.
—ARISTOTLE

Only wholeness leads to clarity,
And truth lies in the abyss.
—FRIEDRICH VON SCHILLER

Repetition is the only form of permanence that nature can
achieve.

—GEORGE SANTAYANA

GETTING IT TOGETHER

Mar:)}; readers of Mark Twain’s story Those Extraordinary Twins
1:“3 bly thought 1.1e made up his account of the Siamese twins Luigi
Angelo, especially the part about Luigi being a heavy drinker and
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Angelo a crusading teetotaler. So it may come as a surprise to know
that Twain’s tale is based on the lives of the first recorded real-life
Siamese twins, Chang and Eng, who were born in Siam (where else?)
in 1811. In fact, Chang really was a heavy drinker, while Eng was a
teetotaler, a state of affairs that apparently caused more than a minor
amount of family discord.

The story of Chang and Eng is an interesting one. They ended up
as American citizens, taking the name Bunker, and before the Civil
War they were slaveholders in North Carolina. Even more interesting
is the fact that Chang and Eng had a passel of children: seven daughters
and three sons for Chang, seven sons and five daughters for Eng. I'll
leave speculation about the twin’s methods in this regard to the
reader’s imagination.

The doings of Chang and Eng show that if you want to study the
behavior of a system composed of many parts, breaking it apart into
its component pieces and studying the pieces separately won't always
help you in understanding the whole. I think it’s clear that if Chang
and Eng had been separated at birth as Siamese twins usually are
today, Mark Twain would not have been the least bit interested;
neither Chang nor Eng taken as an individual was especially notewor-
thy. What makes them special even today is the fact that they were
two humans linked together in a very unusual fashion, a connection
that led to interesting consequences. This connective structure led to
a system considerably more complicated than that representing the
typical man or woman. SO in trying to understand the complicated
system “Chang-and-Eng,” it's essential to take this connectivity into
account; Chang and Eng can’t be understood by thinking of them as
two disconnected individuals. A good summary of the general princi-
ple involved was given by the cybernetics pioneer W. Ross Ashby,
when he remarked in 1956:

Science today stands on something of a divide. For two centuries
it has been exploring systems that are either intrinsically simple
or that are capable of being analyzed into simple components.
The fact that such a dogma as “vary the factors one at a time”
could be accepted for a century, shows that scientists were largely
concerned in investigating such systems as allowed this method;
for this method is often fundamentally impossible in the complex
systems.
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It's exactly this kind of complexity and the surprise arising from

cgannective patterns that we shall look into during the course of this
chapter.

Geometry and Complexes

One way of thinking about connectivity is to consider a set of elements
thflt may or may not share common properties. So, for example, we
might have a set consisting of various types of ﬂov’vers along wgth a
second set whose elements are different colors. The silaring of one
or more colors would then establish a connective linkage between
flower types. Alternately, a linkage between the colors could be made
by focusing on those flowers that share a particular color. Let’s get a

Plt more formal and see how to express these commonplace notions
in the language of sets and relations.
Consider the set

X = {flowers} = {daffodil, rose, carnation, tulip, pansy, orchid}

= {X17 X x6}

and the set

Y= {colors} = {red, yellow, green, blue, white} = {31, 3, . . . s}

As already discussed, a potentially i i i
, y interesting relation R
i e e g ion R for gardeners

“Fl'ower type x; is R-related to color y; if and only if there
exists a strain of flower x; having color y;.”

Since n9mally there exist only yellow daffodils, we have only the pair
Elc]iaffodll, yc?llow) in the relation R. A similar argument for roses shows
at .the pairs (1.'os§, red), (rose, yellow) and (rose, white) are in the
?Veiauon R Corlmnutl}rlxg this process for all the other flowers in the set X,
can complete the entire relation R i ,
e can <o connecting the sets of flowers

A compact way of expressing the relation R is by means of what’s

- called an incidence matrix, which we can represent by the symbol R.
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Let's label the rows of the rectangular array R by the elements of X
and the columns by the elements of the set Y, agreeing that the element
of R in the ith row and jth column equals 1 if the pair (x;, y;) satisfies
the relation R; otherwise this element is 0. So for the flower example
above, the incidence matrix R becomes

Red Yellow Green Blue White
R | O 02 s 2y s

Daffodil (xp) 0 1 0 0 0
Rose (%) 1 1 0 0 1
Carnation (x3) 1 ] 0 0 1
Tulip (xs) 1 1 0 0 1
Pansy (x5) i 0 0 1 1
Orchid (xg) 1 0 0 1 1

The incidence matrix is a way of representing the relation R that's
particularly useful for calculating various measures of connection
between the elements of the two sets under consideration. But when
it comes to actually seeing the overall geometrical structure of the
relation R, i's usually better to have a picture of the relation.
Mathematicians have developed a standard procedure for constructing
an abstract geometrical representation of any relation like R. This
geometrical gadget is called a simplicial complex.

First of all, recall the relationship between a collection of abstract
points and the geometric dimension of the space these points gener-
ate. A single point creates a zero-dimensional object; two points
determine a line, which is a one-dimensional entity; three points form
a triangle, the standard, or canonical, way of representing an area—a
two-dimensional quantity. And, in general, n + 1 points fix an
n-dimensional object for n =1, 2, .. .. Note that these standard
geometrical objects—point, line, triangle, tetrahedron and so on—are
just abstract constructs. They are used as canonical representatives for
all objects of the same geometric dimension. Let’s see how all these
notions of dimension and complexes work in the case of the flowers-
and-colors relation.

For notational compactness, we agree to label the elements of the
set of flowers X by the symbols x;, X, . . . Xg, a5 Was indicated earlier
when we defined this set. Similarly, the colors are labeled y;, ¥3, . . - ¥s-
Let’s arbitrarily agree to call the set of colors the vertex set. From a
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geometrical point of view, we can think of each vertex as being simpl
a point in some abstract space. o
Now consider the element x; (daffodil). Daffodils are only R-related
to Fhe color yellow, which is the vertex element labeled y,. Therefore
x, is the 0-dimensional object (the point) consisting of the single verte);
2. We draw this point on a piece of paper, labeling it y,. Doing the
same sort of analysis for the element x, (roses), we find that x, is the
two-dimensional object formed by the vertices y;, y, and y 2Thus
rose is the abstract filled-in triangle formed by these three \Sfénices,
We also plot this triangle on our paper, making use of the previoué
vertex ), along with the two new vertices y; and ys. Here we see a
connection already appearing between the daffodils and the roses by
mf:ans ofj their sharing the vertex y, (the color yellow). Continuing in
this fashion, we generate an abstract geometrical object for each
ﬂower.' These abstract points, lines, triangles and so on representing
the various flowers are technically termed simplices, and the collection
of .all these simplices is called the simplicial complex of the relation R
This complex is an abstract picture of how the flowers are connecteci
to each other by sharing colors. The geometry of this connective
.relationship is shown below in Figure 5.1. The above way of construct-
ing the abstract geometry of a relation between two sets X and Y is
entirely general, in the sense that it works for any relation R between
any Fwo finite sets X and Y. The key ingredient is to realize that the
relation R “connects” each element in one of the sets with possibl
several elements of the other. So if we agree to regard the element}sl
of X as abstract points (i.e., vertices), then every element of Y acquires
= d1men§ional character by being made up of a certain number of
4 these points, the actual points being determined by the relation R. In

Y2
A T1

u ¥s FiGURE 5.1.
THE SIMPLICIAL COMPLEX FOR
,,,,, THE RELATION R LINKING THE
%3 FLOWERS AND COLORS
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particular, if the element y in Y is R-related to 7 + 1 elements of X,
then y is called an n-simplex, which has geometric dimension 7. The
general idea is shown schematically in Figure 5.2 for the case of a
3-simplex composed of the vertices A, B, C and D. Again, we call the
reader’s attention to the convention that it takes four points to
determine a three-dimensional object (a volume), three points for a
two-dimensional object (a triangle) having area and so on.

The fact that a simplex has a natural geometric dimension in which
it “lives” suggests that trying to force anything associated with this
object into a lower dimension is going to introduce some stress into
the system. This point is illustrated by the familiar parlor game of trying
to connect three adjacent houses to water, gas and electricity lines.
This situation is shown in the top half of Figure 5.3. A bit of fumbling
about soon leads to the conclusion that if the connecting lines all have
to lie in a plane, it's impossible to make all the connections without
the lines intersecting in at least one point like x. But as soon as we
“lift” the problem up into its natural dimension three, we easily find
the nonintersecting solution shown in the bottom half of the figure.

Since the idea of a simplicial complex and the connective structure
it embodies is so central to our concerns in this chapter, let’s look at
another, somewhat less contrived, example to hammer home the
underlying concepts.

Consider the seemingly interminable Middle East situation. Let's try
to represent the conflict between the Arabs and the Israelis as a relation

]
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FIGURE 5.2. AN ABSTRACT 3-SIMPLEX

THE IRREDUCIBLE 177

Gas Electricity

P N

\_’x

FIGURE 5.3.
GAS, WATER AND ELECTRICITY
CONNECTIONS

between the set of participants and the issues that divide them. So for
the set of issues X, we take

X = {issues} = {x), x,, . . . 70}

where

X1 = autonomous Palestinian state on the West Bank and Gaza
X = return of the West Bank and Gaza to Arab rule

x3 = Israeli military outposts along the Jordan River

x4 = Israel retains East Jerusalem

x5 = free access to all religious centers

x6 = return of Sinai to Egypt
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x7 = dismantle Israeli Sinai settlements

xs = return of Golan Heights to Syria

x9 = Israeli military outposts on the Golan Heights

x10 = Arab countries grant citizenship to Palestinians who choose to
remain within their borders

For this example, we assume that the set of participants Y linked by
these issues is

Y = {participants} = {J1, 2, - - - ¥}

where
y = Israel
y2 = Egypt
3 = Palestinians
4 = Jordan

ys = Syria and Iraq
¥6 = Saudi Arabia

As a relation R characterizing the way the participants are connected
to each other through the issues, let’s use the rule

“Participant y; is R-related to issue x; if and only if participant
i is neutral or favorable toward issue (goal) x;.

A possible incidence matrix for this relation is then

N
J2
X3
Ja
s
Vs

— b e e O
— e e e e
_o O O =
oo 0o O o -
= b e e e e
e e e
[ =
e e e e O
[ IR IR
- OO = O

Exarnination of the complex whose vertices are the issues shows
that the most likely negotiating partner for Israel is Saudi Arabia, which
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). is neutral or favorable on all issues except one. This is because Saudi
Arabia is the highest-dimensional object in this complex, being an
eight-dimensional simplex consisting of all the issues except issue x4
' (Israel retaining East Jerusalem). However, both Egypt and the Pales-
tinians are nearly as likely candidates since they are simplices of
i dimension only one less than Saudi Arabia. As the Camp David talks
- demonstrated some years ago, Egypt is indeed a favored negotiating
" partner due also to psychological and other factors not reflected in
i the above relation R.

.- While the foregoing ideas may look childishly simple, even primi-
L tive, we’ll soon see that the notion of two sets and a relation between
. -them contains a2 wealth of information about how the elements
interrelate to each other via a connective pattern. But before moving
k' on to a consideration of these matters, let’s pause to take up a crucial
_'point about the sets-and-relations setup that underpins this entire
[ approach to structural modeling.

. Everything we have said above rests upon the sets and relations
being well defined. For instance, when we define a set of flowers we
have to give a definite rule enabling us to determine whether or not
" a particular element belongs to the set. While this may seem an
F. .obvious requirement, defining a set in practice can pose considerable
- difficulties. For instance, if we want to define the set whose elements
are the countries of the world, there is little difficulty in deciding that
« France, Canada and Brazil belong to the set, but what about places
~ like Scotland or Bosnia-Herzogovina? It’s easy to see how the matter
- of set membership can quickly tum into a very sticky affair.

. Even after we've managed to put together some well-defined sets,
there is still the problem of pinning down a meaningful relation
: between the elements of these sets. As we've already seen with the
L. sets of flower types and colors, a relation in its most general form is
t simply a rule that assigns elements of one set to elements of another.
- But here again we run up against the problem of making the rule itself
unambiguous (i.e., well defined).

To illustrate these considerations, suppose one of our sets is the
members of a criminal gang, while the other set is a collection of
criminal specialties, say things like counterfeiting, bank robbery,
[ ipassing bad checks, jewel theft and extortion. A fairly obvious relation
between these sets involves matching members of the gang to their
¢ criminal interests. Now comes the problem: Where does Louie, who
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works on bilking bereaved widows and lonely spinsters out of their
worldly possessions, belong in such a categorization? His specialty
seems to reside somewhere between the elements “jewel theft” and
“extortion,” with a slight bias toward the latter. So do we include both
of the pairs (Louie, jewel theft) and (Louie, extortion) in the relation?
Or do we just take one of them? Or neither?

These problems of making both set membership and set relations
well defined are, of course, just a form of the far more basic issue of
resolution and scale in the theory of measurement. It’s clear that the
problem of Louie and his low-life criminal interests would vanish into
the now mythical luminiferous aether if we were to add another
element to our set of specialties, the element “fraud.” A similar
refinement of scale would dissolve the difficulty of whether or not to
regard Scotland as a country, by expanding what we mean by a
country to include semiautonomous states that are part of the United
Kingdom.

The point of this small digression is that the hardest part of many
of the analyses we're going to look at in the following pages involves
this initial step of defining sets and relations to make them relevant to
the question at hand. Failing this step, we end up in a situation in which
we literally don’t know what we’re talking about. With this caveat in
mind, let’s now get back to the business at hand, namely, looking for
how surprises can emerge out of multidimensional connections.

Consider the primary color triangle shown in Figure 5.4, whose
vertices are labeled Red, Blue and Green (the O-simplices). The
1-simplices (Violet, Turquoise and Yellow), as well as the 2-simplex
(White), are formed by combining the primary colors. So here we have
a simplicial complex consisting of the single simplex W = <R,B,G>,
together with each of its faces. A person with normal color vision is
capable of seeing any combination of the three primary colors at once,
so will be able to see the entire spectrum of visible colors. Now let’s
do the following thought experiment: Take a subject who can see any
combination of only two primary colors at a time. For the sake of
definiteness, assume the subject cannot perceive any color containing
red. Let the experiment consist of showing this subject flashcards, each
of which is colored in one of the seven colors indicated in Figure 5.4.
Assume that each of these seven colors appears randomly with equal
likelihood. When a card is displayed, the subject tells us what color
he sees, and we pass on to the next card. With a subject possessing
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Red

Yeliow = <R, G> Purple = <R, B>

Green

Blue

Turquoise = <G, B>

FIGURE 5.4. THE RGB COLOR TRIANGLE

normal color vision, we would expect each color to be identified
correctly, and our records would then show that each color appeared
one-seventh of the time, on the average. Now we ask what result’
would be expected from the subject who cannot see red.

For this subject, the set of possible responses is reduced from seven
to three: Green, Turquoise and Blue. Therefore, whenever a flashcard
is displayed that’s one of the colors containing red, the subject will
presumably name one of these three colors with equal likelihood. In
short, the subject just guesses since he cannot actually see the correct
color. So for such a color-blind subject, the records would show that
G, T and B each appear one-third of the time rather than one-seventh,
as was the case for a subject with normal color vision. Geometrically,
this rearrangement of probabilities can be thought of as due to a
reduction of the full color complex from its original two-dimensional
form as the triangle <R,G,B> to the one-dimensional complex <G,B>.

We'll see this same kind of phenomenon surfacing again when we
consider geometrical aspects of classical probability theory later in the
chapter. For now, let’s look at another crucially important aspect of
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complex systems, their hierarchical structure, and how we can geta
handle on the relationships among the levels by employing the
foregoing geometrical notions.

Hierarchies

An almost universal feature of complex systems is that they tend to
be organized in a hierarchical way, with elements at dlfferent' lev'els
in the hierarchy interacting to produce what we see as comphca.txon
and complexity. Thinking of such systems in terms of s'ets and r'elanons
allows us to formulate the general idea of a hierarchy in a precise way.
To do this, we need the idea of a cover set.

Suppose we have a set X containing a finite number of eler.nents.
Now consider a set Y, each of whose elements is a collection of
elements taken from X. If every element of X appears in some element
of Y, then Yis called a cover set for X. Here we can think of Ya§ a'set
existing at a “higher level” than X, since every component of X is just
a part of some component of Y. If we arbitrarily regard N as the level
of X, then Yis a set at level N+ 1.

Since Y itself is a set, we can now consider a cover set Z for Y,
together with an associated relation linking the two l'evels. We thu?n
regard Z as a level N + 2 set. This process can go 1n the opposite
direction, too, letting X be a cover set for some set W at level N — 1

. This idea of a hierarchy of sets and relations is shown abs.tractly in
Figure 5.5 and more specifically for the case of a hospital in Figure 5.6.

N+1:

N:
<\
N OO

FIGURE 5.5. A HIERARCHY BASED ON COVER SETS
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FIGURE 5.6.
A HIERARCHY OF SETS FOR A HOSPITAL
SYSTEM

So, for example, in the hospital case we have the single-element set
{hospital} existing at level N + 3. That set in turn acts as a cover for
the sets of departments at level N + 2, as well as for the level N set
consisting of the elements “bed,” “surgeon” and “scalpel.”

Basic as the above ideas are, they already contain enough mathe-
matical meat for us to say some interesting things about matters in the
arts and humanities, areas often (erroneously) thought to be beyond
the boundaries of mathematical investigation. Let’s look at a couple
of examples.

In his book Multidimensional Man, Ron Atkin suggests that the
process of evoking laughter or tears from a particular M-level situation
corresponds to 2 movement either up to level N + 1 for laughter or
down to level N- 1 for tears. His argument is that in order to be aware
of witticisms present at level N, we must be able to contemplate new
relationships on the N-level sets, either by rearranging existing ele-
ments or by extending the elements to find new relationships between
them—in short, by being aware of level N + 1. Atkin’s claim is that it’s
this sudden jump to the level N + 1 set that generates a release of
laughter. '

In contrast to laughter, which is a widening of our horizons by a
movement #p the conceptual ladder, sorrow and tears represent a
movement downward that shrinks those horizons. Moving up the
hierarchy, we see the possibility for new relationships, a potentially

E liberating situation. A movement downward contracts or eliminates
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the potential for new interactions, forcing us to think we are being
imprisoned by the existing order with no way out.

As one of the many illustrations of the laughter/tears hypothesis
cited in Atkin’s book, let's look at a passage from Joseph Heller’s
classic novel Catch-22. For those unfortunates who haven't read the
book, it tells the story of a group of fighter pilots stationed on an island
in the Mediterranean during World War 11, the main character being
a pilot named Yossarian who wants the bombing to stop. Heller’s tale
is mostly about the adventures Yossarian and his fellow flyboys have
with American generals, Roman prostitutes, assorted nurses and a
motley crew of other participants in military madness and civilian
insanity.

A key scene in the book involves Yossarian’s attempt to get Orr out
of flying combat missions by having Doc Daneeka ground him
because he’s crazy. Doc states that this is only possible if Orr asks to
be grounded. But Doc then adds that he will not be able to ground
Orr if Orr asks to be grounded, since the request itself will constitute
evidence that Orr isn't crazy.

For our set-theoretic purposes, let’s think of Heller's passage as
being an N-level situation, involving the individuals Yossarian and
Orr. At level N+ 1 we have a set consisting of a number of descriptive
words like Sane, Missions, Grounded, and Fit for Duty. Finally, we
find that at level N + 2 there is a set consisting of the single element
Do, since this is the agent who can decide whether or not a man at
level N is a member of the N + 1-level element Fit for Duty.

The scene’s humor comes from the fact that Yossarian thinks he’s
“covered” by the words Insane and Flying Missions at level N + 1,
which would automatically mean that he cannot also be covered by
the term Fit for Duty. But Doc reorganizes the cover set at level N+ 1
by saying that Yossarian’s request is by itself sufficient to demonstrate
that he's Sane, therefore covered by Fit for Duty. Here we see
Yossarian’s frustration at feeling trapped inside the N-level set and
having his appeal to the N + 2-level set rejected through a rearrange-
ment of the N+ 1-level cover. So if you identify with Yossarian, you're
brought to the verge of tears. But if you stand outside the book—at,
say, level N + 3—then you experience the urge to laugh at this
“Catch-22" situation.

To close this short discussion of hierarchical structure, let's look at
how thinking hierarchically can help unravel logical puzzles of
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another type by revisiting a version of the famous Epimenides Paradox
that played such an important part in our story of Gédel's Theorem
in Chapter Four.

The famous Barber Paradox involves a village in which the town
barber shaves all those men who do not shave themselves. Since the
barber himself is a man, it seems to make sense to ask if the barber
shaves himself. Tracing through the logical possibilities, we come to
the surprising conclusion that the barber shaves himself if and only if
he doesn’t shave himself. Considering this situation hierarchically
allows us to dissolve the paradox.

As our basic sets we take B = {barber} = {b}, a set consisting of
the single element “barber.” We also have the set M = {m,, m,, . . . m;}

representing the men in the village. The obvious relation R is given
by the rule

“(b,m;) is in the relation R if and only if the barber shaves
man m;”

So why can’t we determine whether or not the element (b,b) is in the
relation R ?

The problem here is to recognize that the barber is only a barber
(i.e., is properly defined) insofar as he shaves people. Thus, the
element “barber” of the set M is really a symbol for a subset of
men—namely, the set of men who are shaved by the barber. Thus,
the barber as a barber really exists at the level N + 1, say. And when
we try to put him in among the set M, we fail because we are trying
to regard an N + 1-level object as an N-level object, which is what
leads to the paradox.

Hierarchical analyses based upon the notion of cover sets, interest-
ing as they appear, are limited in what they can tell us about the overall
manner in which a relation R binds together the elements of two sets.
For more information, we need to develop a way to measure the global
connective pattern among the objects in a complex. This leads to the
idea of what’s termed g-connectivity.

MAKING CONNECTIONS

In his 1977 book The Luck Factor, author Max Gunther identifies five
factors that he claims separate the lucky among us from the less
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fortunate. Gunther terms one of these factors the Spider Web Structure,
which amounts to what in today’s terms we would probably call
networking. In other words, if you want to be lucky it helps to create
a dense web of friendships and contacts that you can plug into for
getting “lucky vibes.” Whether or not belonging to a network of
connections makes you “lucky” is a matter of semantics, I suppose,
but it’s hard to argue against the underlying principle that the odds of
Dame Fortune smiling your way are better if you know a lot of people
than if you don’t. This principle also serves to illustrate the notion of
chains of connection linking simplices in a complex. Just as in a spider
web, where two distant parts may mutually resonate with each other
without being in direct physical contact, in a simplicial complex we
may have two parts affecting each other at a given dimensional level
without the two simplices having even a single vertex in common. In
this section we see how this can happen and what it means for the
possibility of surprising behavior to emerge from the complex.

The simplices of a complex are connected to each other by sharing
vertices. But this does not mean that any pair of simplices have vertices
in common (i.e., that the simplices are connected pairwise). It's
perfectly possible for two simplices to have no vertices in common
and yet to be connected to each other by an intermediate chain of
simplices that serves as a bridge between them. Figure 5.7 shows the
general idea.

With this picture in mind, we say that two simplices are g-connected
if the lowest-dimensional object in any chain linking them has
dimension g. In other words, two simplices are g-connected if g is the
weakest link, dimensionally speaking, in any chain linking the two

Xs

FIGURE 5.7. CONNECTIVE STRUCTURE IN A COMPLEX
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simplices. Let’s illustrate this crucial idea using the flowers-and-colors
example considered earlier.

Consider the complex each of whose simplices is one of the types
of flowers. We've already seen that these objects are connected to
each other by sharing vertices, each of which represents one of the
possible colors. Let’s first consider matters at dimensional level g = 2.
This means that we’re looking for pairs of flower types connected to
each other by a chain whose weakest link has geometric dimension
two (i.e., consists of at least three vertices). Again let me emphasize
that two flowers might be in the same 2-chain even if they bave no
colors in common. All that’s required is that there be a sequence of
flowers such that adjacent members of this sequence share at least
two colors and that our target flowers form the first and last elements
of the sequence.

Unfortunately, the flowers-and-colors complex is too simple to
reveal this possibility. A quick glance at the incidence matrix shows
that the pair (rose, tulip) and the pair (pansy, orchid) are 2-connected
by sharing three colors. But in this case the two flowers involved are
directly connected at level g = 2, thus forming a chain having only
two links (i.e., there are no intermediate flowers). Similarly, it's not
hard to see that the complex has only a single component at dimension
level g = 1, consisting of all the flowers except daffodil. Finally, there
is again only a single component at level g = 0, but this time it consists
of all six flower types. This implies that for every flower there is a
0-chain connecting it to every other flower. So all the flowers are
connected to each other by sharing at least one color.

While the flowers-and-colors example gives a hint of what we can
hope to learn about the overall connective structure of a complex by
employing this kind of g-analysis, the sets of flower types and colors
have too few elements for any rich pattern of connections to emerge.
So let’s turn our attention to some more elaborate examples that allow
us to exploit the ideas of global connectivity in interesting everyday
settings.

Ecosystem Food Webs

Since species survival and extinction is one of the most basic concepts
in ecology, it’s natural for ecologists to place great emphasis in their
work on what are called predator-prey networks. Figure 5.8 shows the
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1. Bear 6. Insect 11. Salamander
2. Bird 7. Plant 12. Skunk

3. Deer 8. Rabbit 13. Toad

4. Fox 9. Racoon 14. Wildeat

5. Gartersnake 10. Rodent 15. Wolf

FIGURE 5.8. GRAPH OF A PREDATORPREY NETWORK

graph of a hypothetical network of this type containing fifteen species
of plants and animals. In the graph, there is an arc directed from
species i to species j if i feeds upon j.

The problem with this graphical depiction is that it doesn’t show
any of the multidimensional structure of the predator-prey interaction.
So we'll use the techniques of g-analysis to tease out some of these
higher-level connective patterns.

First, we need some sets and a relation. Letting the fifteen species
be represented by the set X = {x;, x,, . . . %15}, We can define a predator
relation Apgp by the rule

THE IRREDUCIBLE 189

“(xi, % is in the relation Apgp if and only if x; is a predator
of species x;.”

Here it's of interest to note that the relation Apgp is defined using the
single set X twice. In other words, to apply our methods, the two sets
involved need not necessarily be different sets.

We saw earlier that for purposes of computation it’s usually easier
to represent a relation algebraically as an incidence matrix rather than
listing pairs of elements or trying to draw its geometrical form (which
cannot be shown anyway unless the complex is of dimension less
than four). So here is one plausible incidence matrix for the relation

A’PRD:
Aprp | X1 X3 X3 X X5 | X X Xg Xo Xio|Xu Xz X13 X4 Xis
X o 6 1 0 0|0 1 O O 1|10 O O O O
X, o 0 0 0 00 1 0 O OjO0 O O O O
X5 6 0 0 0 0}j0 1 0 O Oj0 O O O O
X4 6o 1 0 o0 1{1 0 1 0O 1|1 O O O O
X5 6o 0 0 o 01 0 0 0 O0jO0 O 1 0 O
X 6 0 0 0 0|0 1 0 O O0j0 0 O O O
x5 o 0 0 0 0}j0 O O O O|O O O O O
Xy 6o ¢ 0 0o 0|0 1 0 O OjO O O O O
Xy ¢ 1 0 o0 0|1 0 0 0 00 O O 0 O
X0 o 0 0 0 0|0 O O O O|O0O O O O O
Xy o 0 0 0 O0fj1 0 O O OjO0 O o0 0 0
X, o 0 0 o 01 0 0 0 1/]0 O O 0 O
x5 o 0 0 0 0|1 0 0 O O|0 O O O O
X4 6 1 0 o0 0|0 0 O O 1|0 O O 0 O
X5 6 0 1 0 0|0 O 1 O 140 1 0 0 O

A bit of tracing though the connections in this incidence matrix
turns up the geometrical fact that the simplicial complex whose
simplices are the fifteen species has the following number of discon-

~ nected components at various dimension levels g:

g = 5; one component
g = 4; one component

4 = 3; two components
q = 2; three components
q = 1; two components
g = 0; one component
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So what can we say about the structure of this food web on the basis
of these numbers? ,

Consider the lowest-dimensional level g = 0. At this level, the
network has a single connected component. Recalling the definition
of the relation Apgp, this means simply that there are no isolated species
in the ecosystem; everyone is connected to everyone else by at least
one predator. Moving up to dimensional level g = 1, there are two
components. We can interpret this as saying that the ecosystem splits
into two disconnected components when we consider those species
connected to each other by a chain in which each element shares at
least two predators. Similar conclusions follow for the other dimen-
sional levels.

Analysis of this type gives us information about the geometry of the
network taken as a whole. This is sometimes termed the system’s
global geometry. But it tells us very litle about how well each
individual species is integrated into the overall ecosystem. For this sort
of local information, we need another kind of measure, sometimes
called the eccentricity of a simplex. The basic idea is rather straight-
forward.

Consider a single species in the food web, represented by a
simplex x. Intuitively, we would say that x is not well integrated into
the overall network if it has many vertices that are not part of any
other simplex in the complex (i.e., if x does not share many prey with
other species in the system). So if dimension x = (i.e., x is comprised
of n + 1 vertices), and if m is the largest number of vertices that x
shares with any other single simplex in the complex, then the
difference 7 — m is a measure of how eccentric x is as a member of
the ecosystem. However, it's also reasonable to assume that this
difference is more significant at lower-dimensional levels than at
higher ones since the relative difference is what really matters. So we
normalize the difference n — m by making it relative to m. This leads
to our final measure of eccentricity as

n

-m
m+1

ecc(y) =

where the number 1 appears in the denominator to avoid possible
sero divisors that arise for those species x (like plants, vertex xy) that
share no prey with other species in the system.
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. Using this formula, we can compute the eccentricity of each species
in our food web. These numbers turn out to be:
Species

X1 | X2

X3 | X4 x;‘x(, X7 xs‘xsa‘ X0 | X11 ) X2 | X13 | X4 | Xas
L. 1
Eccentncny}E‘O‘O.Z‘l'O‘aooO‘m‘OIO’OlO}I

These values bear out many of our intuitions about this network,
such as that species like plants (x;) and rodents (x;o) that do not prey
on any of the species are very eccentric indeed—at least from the
perspective of being a predator. Of course, if we had defined our
original relation in terms of prey rather than predation, then we would
have seen a quite different picture of the situation. But I'll leave this
exercise to the reader. For now, let’s shift our attention from the forests
and savannas to the roar of the grease paint, showing how the same
brand of mathematical medicine can be used to shed light on the
structure of a Shakespearean play.

A Midsummer Night's Dream

Even the most casual theater-goer knows that a play has a basic
structure apart from its obvious division into acts and scenes. This
underlying structure involves the twists and turns of the plot, carried
out by the development of characters and situations. It's this structure
that both the actors and the audience intuitively recognize when they
call a play “good.” Here we use ideas of connectivity to study this
“goodness” in the context of Shakespeare’s comedy A Midsummer
Night's Dream.

Based on one edition of A Midsummer Night's Dream, the play can
be divided into three sets:

A = {the play, acts, scenes and subscenes}
B = {the characters}

C = {the commentary, plots, subplots and speeches}

The components of the above sets induce a hierarchical ordering on
the play. So, for example, taking set A we have the play itself, existing
at level V + 2. Then there are the acts, which live at level N+ 1. In
the version of the play I'm reading, the editor has divided it into five

/
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such acts. (Note: Shakespeare himself did not necessarily divide his
plays into acts and scenes; these categories were adopted by later
editors.) Moving further down the hierarchy, at level N there are nine
scenes, while at level N — 1 we have twenty-six subscenes based on
major changes in the composition of the play and the entrances and
exits of characters.

To illustrate the connective structure of A Midsummer Night's
Dream, let's focus our attention on just one of the many relations
existing among the foregoing sets: the N-level relation between the
play’s characters and the scenes. Suppose we let X denote the set of
characters, of which the play contains twenty-one (Hippolyte, The-
seus, Hermia, Puck et al). We then let Y represent the set of nine
scenes. The obvious relation is that a scene is related to a character if
that character appears in the given scene.

Now we have to choose whether we want to let the scenes be the
simplices of our complex, each of which are formed by vertices
consisting of characters, or have things the other way around. Let’s
agree to look at the play from the point of view of the scenes, taking
the set of characters X to be the vertex set while letting the scenes
form the simplices. Under this assumption, g-analysis can uncover
some of the global geometrical structure in the relationship between
the scenes and characters. Carrying out such an analysis shows that
the play is dominated by the final scene, which sees twenty of the
twenty-one characters making an appearance. This scene, of course,
is the culmination of Theseus and Hippolyte’s wedding celebrations
in the performance of the play by Bottom and his friends. Scene 7 is
the next-highest-dimensional object, involving the appearance of
fifteen characters. This is the scene dealing with the outcome of
Oberon’s trick on Titania and their reconciliation. These two scenes
are the most eccentric, as well. It turns out that the complex whose
simplices are the scenes only becomes integrated into a single
component at dimensional level g = 5. This means that an audience
has to follow six characters in order to be aware of all nine scenes.

In a production of A Midsummer Night's Dream directed by Peter
Brook of the Royal Shakespeare Company, two characters, Theseus
and Oberon, were combined to form one character. This production
also combined Hippolyte and Titania into a single character. Since in
Brook’s production these characters were played by a single actor and
actress, respectively, the question arises as to whether this affected
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the way the audience saw the play. Our geometrical ideas offer one
way of addressing this question.

Suppose we define the new set of characters X, which now consists
only of the nineteen characters in the Royal Shakespeare Company’s
production, keeping the set of scenes as before. Again carrying out
the g-analysis, we find no significant change. Thus, an audience
focusing attention on the scenes would see the play as being more or
less the same in either the conventional or the “slimmed down”
productions. But if we shift attention to the characters, taking the set
of scenes Y as the vertices and the elements of X as our simplices, the
situation changes considerably.

In the standard case of twenty-one characters, the structure of the
play is dominated by two components at dimension level g = 5. So
an audience following six scenes sees the play as essentially about
Demetrius and Helena on the one hand and about Puck on the other.
At dimension level g = 3, the characters fall into two components
again. So a theater-goer following four scenes sees the play as
concerning either the lovers Puck, Oberon, Titania and the fairies or
as about Bottom and his friends. But what about Peter Brook’s “avant
garde” version of the play?

In the production with only nineteen characters, the play’s structure
is dominated by three components at dimensional level g = 5. So a
viewer following six scenes sees Brook’s production as being about
Theseus/Oberon, Demetrius and Helena or as about Hippolyte/Ti-
tania or as about Puck. So Peter Brook’s combining of roles has
increased the importance of the Hippolyte/Titania character, which
was previously in the structure only at level g = 4. This production
enhances the Theseus/Oberon character as well, which also appeared
in the earlier structure only at level g = 4.

There is much more that can be said through this kind of geometric
analysis of 4 Midsummer Night's Dream, but space constrains us. So
let’s reluctantly move now from the theater to the world of coffee
houses and chessboards to see how our geometrical ideas of connec-
tivity enter into one of mankind’s oldest pursuits—capturing the King.

The Geometry of Chess

Emmanuel Lasker reigned as the world chess champion for twenty-
seven years. Unlike many chess geniuses, Lasker’s interests were far
from narrow, and his concern with philosophical matters led to a deep
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consideration of what he called the “philosophy of struggle.” For
Lasker, the chessboard was a stage reflecting the struggle of life in its
purest form, a view encapsulated in his well-known remark, “On the
chessboard lies and hypocrisy do not long survive.” He went on to
note that “there are sixty-four squares on the chessboard; if you control
thirty-three of them you must have an advantage.” While this is a vast
oversimplification of the situation, it points out the importance of
positional play in the thinking of chess masters. This positional, or
strategic, view of the game also suggests that it should be possible to
use the multidimensional perspective of g-analysis to evaluate board
positions. Let’s see how this might be done.

The game of chess can be considered as a relation between the
squares of the board and the Black and White pieces. Actually, there
are at least two important relations here: (1) a relation Rg between the
Black pieces and the squares and (2) a relation Ry linking the White
pieces and the squares. But these relations might take many forms.
For instance, we could define a relation by saying that a White piece
and a particular square are related if that piece occupies the given
square. However, such a relation, while perfectly well defined, is quite
useless for the simple reason that it doesn’t embody any of the rules
of the game of chess.

In order to incorporate the rules of the game into some meaningful
relations Ry, and Rp, let’s first define what we mean by a man (pawn,
Knight, Bishop, Rook, Queen or King) attacking a given square. (Note:
Here we shall adopt standard chess jargon, calling all the chessmen
men while reserving the term pieces for those men that are not pawns.)
For the sake of definiteness, let’s center attention for the moment on
the White men. We say that the White man P attacks square S if exactly
one of the following conditions holds:

1. If it's White's move and P is not a pawn or the White King, then
P - Sis a legal move.

2. If Pis a pawn, then § is a capturing square for P (this means that
§ is one of the two squares diagonally in front of P).

3. If there is 2 White man Y on square S, then P is protecting Y (in
the ordinary chess-playing sense of one man protecting another).

4. If P is the White King, then S is adjacent (horizontally, vertically
or diagonally) to the square occupied by P.

5. If i's White’s mOve and square S contains a Black man Z (other
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than the King), then P captures Z is a legal move. (Note: If Z is
the Black King, we are at checkmate and the game is over.)
6. The Black King is on square S and is in check to P.

With this idea of attacking in mind, we then define the relation Ry
linking the White men and the squares of the board as follows:

“White man P; is Rw -related to square S; if and only if P; is
attacking square S;.”

The corresponding relation Rp for the Black men is defined analo-
gously. Note that in these relations a piece does not attack its own
square. This means that the pieces and pawns must protect each other
by attacking the occupied squares. Now let’s see how these relations
can be used to understand the relative strengths of the pieces and to
examine how they combine their varied abilities to form a “field of
force” at any particular stage of play.

Let’s agree to call a particular distribution of the White and Black
men on the board a mode. The game begins with White to move in
mode [0, 0). After White makes the first move, the game enters mode
(1, O; after Black’s first move the game is in mode [1, 1] and so on.
Figure 5.9 shows the distribution of the playing pieces when the game
is to begin in mode [0, 0). Let’s consider the relation Ry, expressing
the way the White men are linked by attacking squares on the board.

In this starting position, the QR-pawn on square a2 is a 0-simplex,
since it attacks the single square b3. Similarly, the KR-pawn is also a
0-simplex. The remaining White pawns are all 1-simplices (e.g., the
Q-pawn is the 1-simplex attacking squares c¢3 and e3). The White
Queen, on the other hand, is a 4-simplex attacking squares c1, ¢2, d2,

FIGURE 5.9.
MODE [0, 0} AT THE BEGINNING OF A
CHESS GAME, WHITE TO MOVE
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e2 and el. In this [0, 0] mode, the Q and K are 1-conne.ct.ed by bth
attacking squares d2 and e2. Carrying out this cormectm.ty analys.ls
for dimensional levels g less than or equal to four, we find that in
mode [0, 0] the g-connected components of the complex formed by

the White men are:

q = 4; two components: Q and K

q = 3; two components: Q and K

q = 2; four components: Q, K, QN and KN

q = 1; eleven components: {KN, KNP}, {QN, QNP}, {Q}, {K}, {QR},
{KB}, {QB}, {QBP}, {QP}, {KP}, {KBP} '

q = 0; three components: {KR}, {QR}, {remaining White men}

Dimensional analysis of this sort yields a new perspecti.ve 09 the
traditional arguments for the relative strengths of the playing p%eces.
Taking the value of a pawn to be P =1, the traditic.mz.il .values asggned
to the pieces are B=N=3,R=5 Q=9 K= infinite. Leaving t’he
King out of consideration, we can reasonably mea.surc.:e the 'relanve
strengths of the pieces in any playing mode by thell" dimensions. In
mode [0, 0], these values are Q = 4, KN = QN = 2, with all the rest' of
the men having dimension 1 except for the KRP and the QRP, which
have dimension 0. Of course these values shift during the 9ourse of
the game. For example, if White makes the King’'s pawn opening move
€2 — e4, the game enters mode (1, 0], and it’s easy to see that the
dimensions of all the White men remain the same except for the Q
and KB. In this new mode, the dimension of the Queen is now 7
instead of 4, while the KB has increased its dimension from 1 to 5
Following the above line of argument, it's instructive to cor.151der
what the maximum possible dimensions of the pieces can be in the
absence of obstacles on the board. R. H. Atkin has computed these

quantities to be as follows:

Piece Maximum Dimension Maximum Attained
Pawn 1 in all modes
Knight 7 when N is inside the square c646-f3c3
Bishop 12 when B is on square c.15, e5, d4 or ed
Rook 13 when R is on any square
Queen 26 when Q is on square d5, e5, d4 or e4
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Comparing these maximum dimensions with the traditional values
given earlier, we find pretty good agreement, with the exception of
the greatly increased value of the Bishop as compared with the Knight.
We notice also the great importance of the central squares d5, e5, d4
and e4. Various theories of chess openings have emphasized the
significance of controlling these squares. The dimensional analysis
also enables us to appreciate schools of thought devoted to the
argument that opening play should be dedicated to the task of bringing
the Rook into play as soon as possible. Castling, as well as the classical
King’s Gambit opening with its early sacrifice of the KBP, are devices
for accomplishing just this. This kind of analysis enables us to attach
some geometrical structure to any particular mode of the game. Let’s
see briefly how this goes by considering a specific game, what in the
chess world is called the Immortal Game.

Figure 5.10 shows the board position after the twelfth round of play
in the famous Anderssen-Kieseritsky game played in London in 1851.
Consider first White’s (Anderssen’s) view of the board. This involves
the complex whose vertices are the squares and whose simplices are
the White pieces. In this complex, we have dim (where dim stands
for dimension) White Queen = 8, dim KN = 7, dim K = dim KR = 4
and dim QB = 3. Moreover, the White pieces are not totally connected
until we reach dimensional level g = 1, and even then the only pieces
that are connected are the Q, K and KR. We also find that this complex
consists of five separate components at the lowest level g = 0.

Black’s view of this board leads to a complex very similar to that
of White. But things look quite different when we shift attention to
the conjugate relations, which are defined by looking at the board’s
view of the playing pieces. In this case, squares that are deep inside
the Black camp and close to the Black K are already part of White’s
structure—either as simplices in White’s view of the board or as

FiGure 5.10.
MODE [12, 12} IN THE
ANDERSSENKIESERITSKY GAME
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vertices in the board’s view of White (the conjugate complex).
Moreover, the Black Q is under attack by the White pawns, a very
dangerous situation for Black. So, in effect, the positions of the
King-side pawns and the KN causes the Black Queen to act as if it
were the 3-simplex consisting of the squares <h6, hs, g5, g4>. But
each of these vertices is in the board’s view of White. In other words,
the Black Queen cannot move without being captured.

Regrettably, there’s no space here to enter into more details of the
way the above sort of analysis can be employed to assess the strategic
value of the various pieces at any stage of play. Nor can we consider
further how this information might be employed in developing a
tactical procedure for deciding what moves to make. The chess
aficionado yearning for more detail will find ample consideration of
these matters in the material cited in the To Dig Deeper section for
this chapter. The main point here is to emphasize the way the
connectivities linking the pieces and the squares change during the
course of play and how this ever-shifting mosaic takes place in a
high-dimensional space difficult to envision in terms familiar from our
everyday experiences of ordinary space and time. And speaking of
time, the time has come to turn our attention to how this same circle
of geometrical notions allows us to look at time itself as a multidimen-
sional phenomenon.

THE TIME OF YOUR LIFE

By now, just about everyone knows that on April 15, 1912, the Titanic
sank on her maiden voyage, resulting in the loss of over 1500 of her
2207 passengers and crew. What is perhaps not so well known is that
the Titanic's tragic fate appears to have been foreseen in various
dreams, hunches, trancelike visions and even in two novels.

One of the most intriguing precognitive images of the Titanic
disaster occurred on April 10, 1912, the day the Titanic left Southamp-
ton for her journey to New York. On that day, Mrs. Jack Marshall was
standing on the roof of her house, watching the ship’s passage through
the narrow body of water separating England from the Isle of Wight.
Mrs. Marshall suddenly turned to her family, who were watching with
her, and stated in a very agitated voice:
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That ship is going to sink before it reaches America . . . Don't
stand there staring at me! Do something! You fools, I can see

hundreds of people struggling in icy water! Are you all so blind
that you are going to let them drown?

Despite assurances from her family that the Titanic was unsinkable
Mrs. Marshall remained in an agitated state until five days later wher;
her deadly vision was fulfilled.

What is especially striking about the numerous “Mrs. Marshalls”
who foretold the Titanic's grisly end is the apparent elasticity of time
Somehow time seems to reverse its normal flow in such accounts‘
enabling otherwise average people to get a glimpse of the future. ’

Even more familiar to most of us is the feeling that time has a
qualitative character about it. While the Newtonian view of time as
the regular oscillation of some giant pendulum in the sky seems to
?vork well in physics, everyday life is filled with expressions like “time
just got away from me today” or “time’s hanging heavy on my hands,”
statements suggesting a far more subjective aspect to our perceptio,n
of time than Newton ever conceived of. This idea is well summarized
in the verse by Guy Pentreath:

For when I was a babe and wept and slept, Time crept;
When I was a boy and laughed and talked, Time walked;
Then when the years saw me a man, Time ran, ,
But as I older grew, Time flew. :
In the next few pages we'll explore the way important aspects of
Pentreath’s poetic vision of the elasticity of time can be captured by
thinking of temporal duration as intervals between the occurrences of
multidimensional events,

The idea that ordinary space is composed of relations between
objects is an old one, dating back at least as far as Aristotle and
ch.ampioned later on by the German polymath Gottfried Wilhelm
Leibniz, among others. The alternative view, in which space is given
a priori and objects are “things” that merely sit in it, rose to popularity
with Descartes and forms the basis for Newtonian science. It seems
inevitable that this Newtonian view of space should be accompanied
by a similarly absolutist Newtonian vision of time, as is indeed the
case. In this “scientific” view of temporal matters, time is a kind of
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cosmic wastebasket, sitting there waiting for events to be deposited
into it. But it’s also clear, I think, that there is a corresponding view
of time as the manifestation of relations between events. And it is this
vision we want to explore here.

In the event-oriented picture of time, the events are a priori in our
experience, just like the objects that have primacy of position in the
non-Newtonian conception of space. By this view, we have to reject
the idea that time is like some continually flowing stream of moments
waiting to be filled by events. What's needed instead is the version
espoused by Aristotle, in which “time is the measure of change with
respect to before and after,” where we understand change to be the
experience of some structure of events. Let's see how all these
Newtonian, Aristotelian and Leibnizian ideas fit into the simplicial
complex framework we've been exploiting in this chapter.

The Newtonian view of time can be represented by the diagram in
Figure 5.11. Here the numbered vertices represent specific measured
moments of time, while the lines correspond to time intervals between
the moments. This is a particularly primitive simplicial complex, one
having an infinite set of vertices. We can attach a number to every
vertex by associating each vertex with a particular measured moment
as read off from, say, a stopwatch or a clock. This process of attaching
numbers to the vertices creates what's technically termed a pattern on
the 0-simplices. Since this pattern is associated with a set of zero-
dimensional objects, let’s give it the name T,. SO this pattern is simply
a rule by which we attach a definite number to each zero-dimensional
object in the complex. Similarly, the numbers assigned to the one-di-
mensional edges joining the vertices form another pattern, 1;, which
represents the time interval between successive measured moments.
Thus, in Newton’s world the overall time pattern 1 is what's called a
graded pattern, which we represent symbolically as © = 15 @ 7;.

The diagram in Figure 5.11 makes it clear why we think of
Newtonian time as a linear concept associated with a complex: it
consists of a set of “lines” (1-simplices) connected by “points”
(0-simplices). When we use the Newtonian time axis to represent a
set of observed real-world events, we try to produce somehow a
«clock” whose time moments (the vertices) can be put into one-to-one
correspondence with the set of events. The pattern 1, describes the
NOW events, while the pattern t; describes the interval pattern
separating these events.
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FIGURE 5.11. THE NEWTONIAN TIME PATTERN

In his book In Search of the Miraculous, P. D. Ouspensky presents
a table of time intervals that he claims are the most crucial for
humankind. These intervals are “the quickest impression,” “breath,”
t‘waking and sleeping” and “life.” According to Ousper’lsky thes’e
intervals have the values 0.0001 seconds, 3 seconds, 24 hours ’amd 80
years, respectively. All these intervals are, of course, measured by the
scale of objective Newtonian time as outlined above. We'll see in a
moment how they match up to the subjective time scale generated b
taking a multidimensional view of time. ’
. F.rom the discussion of hierarchies in an earlier section, we know
it's important to distinguish between events at level N, levei N+1and
so on. Consequently, at any one of these levels we can expect events
to generate a connective structure that we will term the backcloth for
that level. It's with respect to this backcloth that we experience our
sense of time. Let’s see why.

Consider the backcloth at level N, which we denote S(N). The
structure of S(V) will normally consist of 0-simplices represénting
those “events” that are points, 1-simplices characterizing the events
Fhat are pairs of points (edges) and, in general, p-simplices symboliz-
ing those events formed by p + 1 points. If an event in this backcloth
negds a p-simplex for its representation, let’s a\gree to call it a p-event
This will correspond to a p-dimensional NOW event. In that case thé
corresponding time interval needs to be a (p + 1) event since ;uch
events are what join p-events together.

To illustrate what we mean by a p-event, consider the event “house.”
We only recognize the occurrence of this event when the entire hous'e
is complete and ready to be lived in. But many things have to take
place in order for this to happen. For the sake of definiteness, let's
say that for the house to be complete it needs to have a founda,ltion
walls, floors, roof and exterior trim. So there are five vertices here ali
of which taken together constitute the occurrence of the e\;ent
“house,” and the event “house” requires a 4-simplex for its repre-
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sentation, the vertices of which are the points “foundation,” “walls”
and so forth. Thus, recognition of the existence of the event “house”
is a 4-event.

Note the important distinction between thinking of, say, a 1-simplex
as a 1-event and regarding the same simplex as a 1-interval between
two successive 0-events. In the latter case, we can order (in the linear
Newtonian sense) the endpoints of the 1-simplex, while in the former
situation we cannot. So when we think of a p-event, we are saying
that the p + 1 points making up this p-simplex may not be able to be
ordered in this way. All we can say is that they form a distinct,
irreducible unit. The associated time intervals then become an expe-
rience of time passing, allowing us to move from one such p-event to
the next p-event.

When we try to pretend that these time experiences are Newtonian,
implying that every event is a 0-event, we are effectively treating the
geometry of the backcloth S(N) as if it were the linear structure of
Figure 5.11. Intuitively, this corresponds to trying to warp the natural
geometry of the events. So by forcing our time experience into the
clock-time of Newton, we end up subjecting ourselves to structural
stresses and strains that give rise to expressions like “time flies,” “time
drags” and “time is running out.” Let’s look a little deeper into this
relation between experienced time and Newtonian clock-time.

For a Newtonian clock-time observer, every time interval has to be
described in terms of intervals between events (i.., in terms of edges,
or 1-simplices). How would such an observer see a p-event in the
Newtonian backcloth S(N)? The number of edges in a p-simplex is
pp+1)/2.80 interms of the Newtonian clock-time unit, be it 1 second,
1 day or whatever, such a p-event would require at least this many
units to manifest itself as an actual occurrence. So, for example, if the
unit for our Newtonian observer is 1 day, a 7-event would appear to
take (7 x 8)/2 = 28 days to “arrive.” We can term this number the
consolidation time for a 7-event. But it may require more units since
the event can only be seen to have happened when the observer has
gone around the edges of the 7-simplex in some order. This Newto-
nian observer might choose a path through these edges that involves
traversing some edges several times before all the edges of the
7-simplex have been covered.

Notice now that if we allow our observer to move up the hierarchy
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from level N, say, to level N + 1, the observer would be able to see
all .the faces of the p-simplex (i.e., all the subevents of the p-event)
This observer would need a Newtonian clock-time for each of them.
In th.e case of a 2-event, for instance, the N + 1-level observer would‘
see six subevents: three O-events (the vertices of the triangle) and three
tlh-c.events (the edges of the triangle). In general, it can be shown that
o el me o povent s ven by e i
. \ , per consolidation time is
1792 clock-time units. So the level-V observer sees a 7-event occur in
28 days; for the level-N + 1 observer, the same event takes 1792 days
or approximately 5 years. This kind of analysis focuses on the events,
Now let’s take a moment to consider the time intervals between events.
We have already noted that the intervals separating p-events requiré
b + 1 points. Consider first a Newtonian observer at level N. Assume
51.1ch an observer sees only the edges connecting two p-events
Flgure 5.12 shows this situation for a pair of 2-events. Then the finai
interval between the “end” of one p-event and the end of the next is
formed by counting each of these edges once, then adding that

- —————— 2-event

lcz

— 2-event

A,

C

FIGURE 5.12. SUCCESSIVE 2EVENTS WITH
CONNECTING EDGES
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2
number to the consolidation time. This gives a total time of (p + t11)
+ p(p + 1)/2 time units. Again focusing on the case p=7,we see t azt
the Nevel time interval between two successive 7-events will be 9

i wtonian clock-time.
unflt‘zll?ii:zn N+ 1-level view, we need to move from the first p-event
to each subset of the vertices of the second p—event..Thus,.vufe add the
total of these edges to the previous cc;nsolidatign t@e, giving us the
formula (p + D' x 2P +p(p+ D x 27 for the.txme interval betwe.en
the p events as seen by an N + 1-level Newtonian observer. Referring
to Figure 5.12, this would mean that such an obsex:ver would have to
count the edges AjAy, A;B,, A\C; and then the Paxrs of edges {A1A;,
AB,), {A1A), A1C,), {AB,, A,C,} and then tr.lples .Of edgesd{glA‘Z,
A;B,, A,C;} and then repeat this process starting with B, an ! in
turn. The final consolidation time would then be formed by adding to
this count the super consolidation edge count for the §econd 2-event. In
this higher-level view, the interval between successive 7-events tu.ms
out to be 9984 time units. This means that if an N + l—leve.l Newtonian
observer saw an interval of 1 day between two 0-events, it would take
nearly 30 years for this observer to see a pair of 7-events pass. L
These speculative sums contain many assumptions about. the relation
between hierarchically experienced time and clock tlr’ne; .Oddly
enough, though, they are very reminiscent of Quspenskys times of
the cosmoses” reported above. By way of comparison, 'ljable' 5.1 showsf
Ouspensky’s values for these durations alongside the time intervals o
successive 8-events at hierarchical levels N - 2, N~ 1, N and.N +1,
taking 24 hours as a given standard in both lists and calling this level
imilarities are striking.
; g: t:Ks)lvxvn, the reader should have no difficulty in seeing thg intimate
connections between our perception of time and the notion of an
event being in some way “surprising.” But in tl}e vernacular, surppse
is usually associated in some way with the likelihood of an event (i.e.,

TABLE 5.1.
OUSPENSKY'S TIME INTERVALS VERSUS TIME DURATION BETWEEN 8-EVENTS

Quickest Impression Breath  Waking/Sleeping Life
Ouspensky 107 seconds 3 seconds 24 hours 80 years
: Level N—2 Level N-1 Level N Level N +1
¥ is 1.34 x 10 seconds 3.4 seconds 24 hours 70 years
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the probability of its occurrence). So in the next section we develop
this theme a bit further, showing not only how surprise can be
rigorously formulated in terms of connective structure in a complex
of events, but also how classical probability theory arises from the
consideration of a very special kind of maximally connected complex.

SOME SURPRISING CONNECTIONS

As Albert Einstein and Erwin Schrodinger were strolling along Berlin’s
Unter den Linden one day in 1926, Einstein remarked, “Of course,
every new theory is true, provided you suitably associate its symbols
with observed quantities.” Here Einstein was referring to the episte-
mological difficulties surrounding Schrédinger’s then-recent develop-
ment of what has come to be called the wave function interpretation
of quantum phenomena.

In this conventional view of quantum phenomena, every observ-
able aspect of a material object—position, momentum, spin, charge,
energy—is encoded into a single mathematical gadget, the wave
function. So the quantum mechanician’s prescription for predicting
the results of an experiment designed, say, to measure the momentum
of a speeding electron is quite simple. First construct the wave function
for this experimental situation, which involves solving what’s called
the Schrédinger equation. Then “slice” this solution in a well-defined
mathematical way, the particular slice corresponding to the attribute
you want to measure—in this case the electron’s momentum.

While Schrodinger’s equation for the quantum wave function serves
admirably as a vehicle by which to predict the outcome of laboratory
experiments, the wave function itself has defied all attempts to give
it an interpretation in terms of physically observable entities. It remains
today as much of an ontological mystery as it did the day Schrodinger
first wrote it down. In fact, Schrédinger himself became so exasperated
with Niels Bohr’s persistent attempts to get him to admit that his wave
function had no physical interpretation that he once blurted out, “I
am sorry I ever started to work on atomic theory.” Strong words from
the man who in 1933 was awarded the Nobel Prize in Physics for “new
insights into atomic theory.”

Probably the biggest mystery of the quantum world unveiled by
Schrodinger, Bohr, Heisenberg and others in the 1920s is what we
now call the quantum measurement problem. As noted, the values of
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attributes like position, momentum and spin of quantum objects like
photons and electrons are all described by the Schrédinger wave
function. But until 2 measurement of one of these attributes is actually
made, the wave function describes merely the likelihoods of the
possible outcomes of such a measurement. Once the measurement is
actually taken, of course, the potential outcomes are replaced by a
single outcome, which we term the result of the measurement.

The problem here is that prior to the measurement, the wave
function exists as a kind of mathematical wave of probability. Yet as
soon as we make an observation, this wave “collapses” to a single
point—the outcome of the measurement. The essence of the meas-
urement problem is to ask how this collapse comes about and what
it actually means in physical terms. In short, what's so special about
the act of a measurement? And how does this physical action of
observing a system collapse what appears to be a purely mathematical
gadget, the wave function? Although the point is never mentioned in
courses on probability theory, it’s of considerable interest to note that
the very same kind of collapse also occurs in classical probability

theory.

Probabilities and Simplices

One of the great challenges to both science and philosophy is to
provide a rational, coherent account of the perceived uncertainty
surrounding the events of daily life. Classical probability theory offers
one such approach but is riddled with many well-known epistemo-
logical flaws and paradoxes. The theories of fuzzy sets, satisficing and
possibilities represent recent attempts to rectify some of the deficien-
cies in the classical methods. Each of these newer schemes has at its
heart the basic fact that randomness is only one face of the mask of
uncertainty. Actually, most of the uncertainty we experience about
everyday events cannot usually be attributed to the influence of
random mechanisms, at all. Rather, it seems to stem from an inherent
vagueness, or lack of information, either in the linguistic description
or in other circumstances surrounding the situations we find ourselves
confronting. Here we want only to indicate the manner in which the
multidimensional structure of a simplicial complex allows us to
formalize many of the notions of uncertainty, probability and surprise
in a manner providing some insight into the basic difficulties involved
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in characterizing uncertainty. We'll then give a few suggestions for
how a cpherent theory of uncertainty and surprise might be developed

Consider an experiment in which we toss a fair die four times ir;
succession. Suppose our interest is in whether or not the face 6
appears. Let’s label the elementary events (i.e., the outcome) of each
throw by x;, x,, x3 and x,. Thus, the quantities x; are what probabilists
call random variables. We can then combine these individual elemen-
tary fE\'/ents into a set of elementary events denoted by X. To be more
specific, the element x; represents the event that 6 occurs on the first
toss, % is the event that 6 turns up on the second toss and so on. Now
co.n51der the new set Y, consisting of compound events asso;:iated
v.v1th the entire experiment of four tosses. In this experiment there are
sixteen possible outcomes ranging from no occurrences of a 6 to all
tosses resulting in 6. So we label the elements of ¥ as

Y= {90 Y1, Y2 Y3 Yo Y12 V13 V14> V23, Yok V3do Y123,
V124, V134 V234 Y1234}

where y, means no 6 occurred, y, means that a 6 occurred only on

the second toss and so forth.

" If we take the elements of X to be the vertices of a complex, letting
e elements of Y be simplices formed from these vertices, it's easy

toldevelop a relation Ry linking these two sets. It is defined by the
rule

f‘The pair of elements (y, x) is in the relation Ry if and only
if elementary event x forms part of the compound event P

We can easily compute the incidence matrix for Ry : it has a 1 in the
Focliumn labeled x; if and only if the integer i appears as one of the
1(:1:; zn)ui:l:;r.s on simplex y. For example, (3, x1) is in Ry but
Computing the chains of g-connection in this complex, we find that
the com.plex has only a single component at each dimerlsional level
Il:l fact, it’s easy to see that what we’re dealing with here is the sin le
simplex ¥;,34 and all of its faces. This is exactly the kind of structfre
for which classical probability theory works well for expressing our
sense of the unknown and the uncertain. Let’s see why. ¥
The complex whose simplices are the compound events y, repre-
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sents what the probabilist terms the sample space of the 41e—tos§1ng
experiment. But in contrast to the usual Yie'w o.f events as dmgensxon—
less objects, the multidimensional view distinguishes strongl()i' etweetrsl
the compound O-events (1, Y2, ¥3 and yy), the compoun l—evetrll1 °
(312, Y13 and so on up o the single 3-<.3ver'1t (ylz34f).hBefo:e the
experiment is performed, our sense of the 111.<<.31.1hood of the ou col
is measured by attaching numbers (probabilities?) to each simplex.
Arter the experiment has been carried out, these gumt?ers have lrlear—
ranged themselves throughout the complex; all 51m911ces now avel
the value 0 except for that single simplex corresporlldmg to the actua
outcome. By convention, we set the value of that simplex equal to 1.
So we see that carrying out the experiment corresponds to some
kind of “traffic” on the complex. But traffic of this sort can move f.'reely
about from one simplex to another only if the complex is sufficiently
richly connected at all dimensional levels t(.) suppoxft such a free ﬂo;v
of dimensionally significant numbers. Basically, this mfeans t.hat the
complex must be free of dimensional obstacles at all dlm.ensmns. I;
other words, it must have a single chain of connection for a
dimensional levels—just as with the die-tossing complex a?ove. Ca§es
from classical probability theory, when the complex in ql'Jesnon
consists of a single simplex and all of its faces, are the simplest
s of situations when this will occur. N
elelrr:l pcl:nnection with the die-tossing experiment, the probabilist
would attach the following a priori values to the elements of Y:

625

E(1-simplices) = 150
EQo) = 1306 P 1296

00
E(0-simplices) = 15—29_6

E (2-simplices) = Tzz'g—e E(nzsd = Tz%é

These numbers express the probabilist’s sense of the likelihooc? of
events and are formed by recognizing that there are 1296 possible
outcomes of the four rolls of the die. Of these, there are 625 sequences
containing no 6s, 500 sequences showing a single 6 gnd SO dowrtlh to
a single sequence in which all four rolls are 65. 'Invokmg the fact that
the rolls are independent leads to the probabilme.:s s.tated above. After
the experiment is over, these numbers have redlstrxt?uted themselves
so as to coalesce on that one simplex correspondmg to the actual
outcome. But this rearrangement is possible only if thf nurpperf
associated with p-events can freely move about and ‘“reaffiliate
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themselves with events at all levels of connectivity p. This can happen
only in structures having a single component at each connectivity
level.

The main point about connectivity here is that if the numbers
assigned to the compound events in Y are to represent our sense of
the likelihood of the outcome of the experiment, then they must do
50 both before and after the experiment. But this requires the kind of
free flow of traffic discussed above, a flow that is possible only if the
complex representing the events is fully connected at all levels. Thus
we conclude that classical probability theory will in general reflect our
sense of the likelihood of events only for those structures possessing
a single component at each dimensional level.

So we see that the redistribution of numbers over the complex when
we actually perform the experiment is completely analogous to the
collapse of the Schrédinger wave function in quantum mechanics. In
most versions of quantum theory, an object’s attributes exist as
potentials, the various possibilities weighted according to the prob-
ability distribution specified by the solution to the Schrédinger equa-
tion. This probability distribution is what we call the wave function.
Following the actual measurement, a definite value is obtained for any
given attribute, the wave function then being said to have collapsed
to the single value actually observed. All other possibilities then have
probability zero.

As a result, our complex of events, together with its associated
likelihood numbers, is analogous to the quantum-mechanical wave
function. But it has the additional feature that the possible events
(simplices) have a dimensional character that must be respected when
considering any redistribution of likelihoods following an experiment
(observation). The quantum-mechanical implications of these dimen-
sional factors have not been investigated as yet, classical quantum
theory having confined itself to the same case as classical probability
theory, viz., complexes with a single component at each dimensional
level of connection. Now let’s talk about surprise.

One of the principal uses of probability theory is to provide a
numerical measure of our sense of how surprising the occurrence of
a particular event would be. By the foregoing arguments, we find that
the concept of surprise is intimately tied up with the connective
structure linking events in the space of possible outcomes. In particu-
lar, to develop a decent theory of surprise we need a measure of the
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“reachability” of a g-event, call it 6, from another base event c; (the
NOW) in the complex.

On intuitive grounds, the surprise value of a g-event o, should be
a number that:

1. Reflects the level of connectivity between o, and the NOW event
c;,. In particular, if there is no chain of g-connection between the
two, then the surprise value should be zero, since we can’t be
surprised if the event o, cannot be experienced from o}, if there is
no appropriate dimensional path to move from the NOW event
to O,

2. Is greater if there are a large number of disjoint p-chains from the
base event to G, since it is more surprising if a large number of
p-chains go between the two events than if there are only a small
number of such paths.

3. Is smaller if the dimension of the NOW event is large since it is
less surprising that g-chains exist from the base event to g, if the
NOW event has more g-dimensional faces.

One measure satisfying these conditions involves the number of
disjoint g-dimensional chains linking the base event to o4 For the
more mathematically inclined, the specifics of this measure are given
in the To Dig Deeper section.

An interesting and timely example of the use of surprise theory
arises with the surprise value of a technological disaster, like that
associated with nuclear power plants such as Three-Mile Island or
Chemobyl. Let the vertices X of the complex represent various
technological features of the plant. These elements might be things
like the position of control rods, the level of coolants and the pressure
in regulators. Let the set of simplices Y forming the complex K that
represents the plant consist of combinations of features that we term
properties or behaviors of the plant.

If all the vertices are initially in the state OK, then we say that all
is well. Assume that during the course of operation of the plant some
vertices turn into antivertices—their OK activity turns into not-OK. So
the complex K turns into a new complex K ! As the process of vertices
shifting to and from OK < not-OK unfolds, we have the progression

K—->K1—+K2—>...-—>KD
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where the event o = DISASTER belongs to X°. We can now ask th
question, Given the base event (state) 0'; in K, what is the su t‘ .
value for an event ¢ in k7? Clearly, we would like to arra o our
technology to make this number large. e our
On the perhaps optimistic note that such a technological dream can
be transformed into a reality, let’s leave the idea of surprise arising a
tt.le result of multidimensional connections, turning our attention fo :
different way in which connective structure can lead to the unex-
pected: self-similarity in both space and time. This comes about vi
the twin phenomena of self-organization and emergence. N
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Intuition: Surprising bebavior
results only from complicated,
bard-to-understand
interactions among a

system’s component parts.

The notion of structure is comprised of three key ideas: the idea
of wholeness, the idea of transformation, and the idea of

self-regulation.
—JEAN PIAGET

God bas put a secret art into the forces of Nature so as to enable
it to fashion itself out of chaos into a perfect world system.
—IMMANUEL KANT

Large streams from little fountains flow,
Tall oaks from little acorns grow.
—DAavID EVERETT
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CHECKERBOARD COMPUTERS

In the summer of 1967 I found myself working as a programmer at
the RAND Corporation in Santa Monica, California. One day my boss
dropped by my office to say that there was a Harvard professor visiting
for the summer who needed a little programming help, and could I
deal with the situation. While my enthusiasm for helping Harvard
professors wasn't much greater then than it is now, in those days
RAND was a place where even a summer consultant from Harvard
might be doing something interesting. So I agreed to get in touch with
this guy in the morning and see what his problem was. As fate would
have it, this “guy” tured out to be the world-renowned political
economist Thomas C. Schelling, who was engaged in an experiment
that led directly to my first professional encounter with the phenome-
non of emergence.

The next day Schelling told me that to while away a January blizzard
the previous winter, he had pulled a checkerboard off the shelf at his
vacation home in the White Mountains of New England to test a wild
theory he had concocted about the dynamics of racial patterns in
housing. Specifically, what he was out to explore was the matter of
whether decisions made by individuals about where to live, decisions
based upon simple rules employing only local information (i.e.,
information only on the color of one’s immediate neighbors), could
generate observable patterns of racially segregated housing in initially
mixed neighborhoods. This was a phenomenon Schelling termed
tipping, which to my physics-trained eye looked like a sociological
version of the kind of phase transition that takes place when water
turns to ice. He said that he had experimented with the idea by placing
black and white pieces on a checkerboard, finding that some rules for
shifting the pieces from one “homesite” to another did lead to such
racial tipping. But he wanted to do a more systematic set of experi-
ments using much larger checkerboards (urban areas) and test a
broader set of rules. Enter the programmer and his computer.

To respect the rather puny memory available on the computers of
the day, Schelling and I partitioned the urban region into a rectangular
grid of 16 by 13 cells, assuming that each cell represented a homesite
that could be occupied by a white or a black family or be empty. Thus,
there was a total of 3161 = 3208 _ 1% possible states this urban area
could be in, each of which represented one housing pattern distribu-
tion of the black and white families in the region.
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As the rule of moving, Schelling postulated that both the blacks and
the whites would prefer to have a certain percentage of their imme-
diate neighbors be of the same group. So if this were not the case for
a particular distribution, the model assumed that each person would
move to the nearest available location where the percentage of like
neighbors was acceptable. In order to have a reasonable choice of
where to move, the earlier hand-done checkerboard experiments
showed that around 25 to 30 percent of the housing locations should
be left vacant.

Defining the neighbors of an individual homesite as all 8 immedi-
ately adjacent locations, and starting with the racially mixed initial
state shown in Figure 6.1, in which the symbol o denotes a white
family, the symbol # denotes a black household and a blank space
means the housing space is empty, we came to the steady-state
distribution of Figure 6.2(a) using the condition that at least half of
one’s neighbors must be of the same color. Figure 6.2(b) shows the
resulting steady-state distribution from the same initial configuration
when the requirement is that at least one-third of one’s neighbors
must be of the same group. Notice the “tipping” that takes place as
the area changes from racially mixed to racially segregated. Although
neither Schelling nor I realized it at the time, this racial integration
experiment is a perfect example of a mathematical gadget that
Stanislaw Ulam had already invented under the rubric of a cellular
automaton (CA).

Cellular Automata

Consider an infinite checkerboard in which each square can be
colored either black or white at each instant of time ¢. Assume there
is a rule specifying what the color of each square should be as a

oOK###0000 ## 00O

O #0000 ## # #o0

# #O0O##H # oO% ##

# # # o###¥00

(o] OO # # # # # # 00

#0#% O0OO0%H oo # # Ficure 6.1.
#00%H QOO H### INITIAL HOUSING
O #0 ## %000 #  DISTRIBUTION
o #0 40 #

oo # O#000O0##
O##00O00 OH#H# O##

# oO#O# OO#O#O0 O

oo O#0#%#000 # #

THE EMERGENT 215
LR EE ###4% 00 O 000O0O#0 0000 O
LB R R R ERNEE RN NIENNNR O 00 O##40 00 OO
#EREENUENEES HBO0O COO#NOO O##O -]
# L EXREERER N N #00 ##% O OO0O#H#0O0 OHO
QCOOQOH#UHUAS #» @ HEEH » * # #
QOCOO0OOH#HH#H#H00 # 4% 00# *#% #04 *
00000000000 ## #0004# #000# #
[¢] 0O 000 00O # OBS NS HHIHBHOO HH4s
[ [} o # o# #o0 00 000 #
o0 ‘0 000 ## O##% OO#H#S 00 00O
] 0000 O CO## O#R#RHNOO#RNHOO HOHH

o © 00 ©0 oo OCO#% #O0 ##BO0O## %
oo o 0 000 # ¥ 00 ##% #4#% 5 #»

,—
&

.

A

FIGURE 6.2. (A) HALF OF NEIGHBORS THE SAME COLOR; {B) ONE-THIRD OF NEIGHBORS THE
SAME COLOR

function of the colors of its immediate neighbors. Now let an initial
pattern of black and white squares be given at time ¢ = 0. Turning the
system on and letting the rule of state transition operate, we examine
the configurations of black and white squares that emerge as time
unfolds in discrete steps ¢t = 1,2,. . . . In other words, we watch the
squares blink on and off at each time step in accordance with the
dictates of the rule of state transition, looking for whatever patterns
might turn up. This setup describes the prototype for a cellular
automaton (CA) or, more accurately in this case, a two-dimensional
CA, since the playing field (i.e., the state space) here is a planar grid.
Let’s consider for a moment the key ingredients constituting such a
computational and mathematical object.

* Cellular state space—The backcloth upon which the dynamics of
the automaton unfold is a celfular grid of some kind, usually a
rectangular partitioning of ordinary one- or two-dimensional space.
Our interest here will focus upon these classes of cellular automata
for the simple reason that they are easy to visualize and capture most
of the features of higher-dimensional CA.

* Finite states—Each cell of the state space can assume only a finite
number k of different values. So if we have a finite grid of N cells, the
total number of possible states is also finite, equaling &,

* Deterministic—The rule fixing the value of each cell at a given
moment is a deterministic function of the current value of that cell
and the values of the cells in a neighborhood of that cell. On occasion
people modify this condition by allowing stochastic transitions. But
for our purposes here, we consider only deterministic transition rules.
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« Homogeneity—Each cell of the system is the same as any other
cell, in the sense that they can each take on exactly the same set of &
possible values at any moment and each change their state in
accordance with the same rule.

» Locality—The state transitions are local in both space and time.
This means that the next value of a given cell depends only upon the
current value of that cell and the values of cells in an immediately
adjacent neighborhood. So there are no time-lag effects, nor are there
any nonlocal spatial interactions affecting the state transition.

For one-dimensional CA, the local neighborhood of a given cell
consists of a finite number of cells on either side of that cell; for
two-dimensional CA, there are traditionally two basic neighborhoods
of interest: the von Neumann neighborbood, which consists of those
cells vertically and horizontally adjacent to the given cell, and the
Moore neighborbood, which also includes those cells that are diago-
nally adjacent. These neighborhoods are illustrated in Figure 6.3. As
it turns out, most of the principal features of cellular automata that
make them both theoretically and practically interesting can be seen
by focusing attention on the simplest class of such objects, the
one-dimensional cellular automata (1-D CA).

A 1-D CA consists of an infinite string of cells changing values
according to a given rule. We can think of some cosmic clock ticking
away such that at each tick every cell in the string assumes a value
determined by its previous value and the previous values of cells in
its neighborhood. Therefore, a 1-D CA is specified by two numbers,
let’s call them & and R, together with a rule determining the next value
of each cell. The first number, k, specifies how many values are
possible for each cell, while the quantity R refers to the size of the

(a) (b)

FIGURE 6.3. (A) VON NEUMANN NEIGHBORHOOD; {B)
MOORE NEIGHBORHOOD
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neighborhood used to compute the next value of a cell. So, for
example, when k=2 and R = 1, a particular rule might specify that if
a string of three successive cells has the values 011, the next value of
the center cell would be 1.

The set of rules that define a given 1-D CA must uniquely determine
the fate of a cell for every possible set of cell values in its neighbor-
hood. Clearly, if £ and R are large, the number of possible rules is
enormous. Even in the simplest case, when & = 2 and R = 1, there are
256 possible rules, each of which corresponds to a different 1-D CA.
Just to get a feel for these objects, let’s look at the behavior of a 1-D
CA defined by one of these 256 rules, something called the Mod 2
Rule.

The local rule for the time evolution of this Mod 2 CA can be
represented by the diagram

111 110 101 100 011 010 001 000

Here the upper part shows the eight possible states that a row of three
successive cells can be in at time ¢, whereas the lower half shows the
value that the central cell of each trio assumes at time ¢ + 1. This is
called the Mod 2 Rule since the value of each cell is determined by
simply adding the value of its two neighbors, d1v1d1ng that number by
2 and keeping the remainder.

The following dlagram shows the action of the Mod 2 Rule over
one time step:

(ime #)...101101101010110...
(time£+1)**0011011000001 **

To see how complicated the behavior of some 1-D CA can be,
Figure 6.4 shows the evolution over several time steps of four
different rules. In each case, the initial state of each cell is chosen to
be 0 or 1 with equal probability. To make it easier to see the patterns,
cells in state 0 are left blank in the figure, while cells in state 1 are
colored black. Note also that time is taken to move downward, so that
the top line in the figure is the configuration at time ¢ = 0, the second
line is the CA state at ¢ = 1 and so forth.

The patterns of Figure 6.4 illustrate the four possible types of
long-run behavior, which Stephen Wolfram has termed Types A, B, C
and D. Recalling the discussion of attractors given in the opening
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FIGURE 6.4. THE EVOLUTION OF FOUR DIFFERENT 1-D CA RULES

chapter, the reader will have no difficulty recognizing these CA
behaviors as being the counterparts in discrete time and space of the
attractor types we saw in earlier chapters for continuous-time, con-
tinuous-state dynamical systems. Here are the correspondences:

Attractor Types
Dynamical System Cellular Automata
Fixed point Type A
Limit cycle Type B
Strange attractor Type C
Quasiperiodic orbit Type D

These kinds of simple CA have been used to model a bewildering
variety of processes ranging from the sequences of nucleotide bases
on a strand of DNA to the complexity of both human and computer
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languages. To see how such applications go, let’s briefly indicate how
1-D CA can be employed to capture some aspects of the development
of a plant.

The Growth of Plants

In the late 1960s, Dutch biologist Aristid Lindenmayer proposed a CA
model for the development of filamentous plants, such as the blue-
green algae Anabaena. His model contains the novel feature that the
number of cells is allowed to increase with time according to a recipe
laid down by the state-transition rule. In this way the model “grows”
in 2 manner mimicking the growth of a filamentous plant.

The simplest version of one of Lindenmayer’s L-systems involves a
one-dimensional grid that starts at time £ = 0 with a single active cell
having value 1. The state-transition rule is as follows: “The next value
at cell { is given by its current value together with the value of the cell
immediately to its left (i.e., cell i — 1).” Thus we can express the
complete state transition at cell § as

(i1=0,i-1=0=i=0 (1=0,i-1=D=i=1
G=1i-1=0)=2i=11 G(G=1,i-1=1D=i=0

The interesting feature of this rule is the possibility for cell division
that occurs when i = 1, i — 1 = 0. If we take an initial state such that
the first cell at the left has value 0, while the cell next to it has value 1,
then the first four state transitions are 01, 011, 0110, 011011. Already
we see here the growth of the initial “seed” at cell 2 to several seeds
at cells 2, 3, 5 and 6.

It must be admitted that these linear strings of 0s and 1s don't look
much like what anyone would even charitably call a plant. So to bring
out more clearly the connection between L-systems and the real world
of plants, let’s soup up our notation by extending the symbol alphabet
to include the new symbols [ and ]. While we’re at it, let’s also jazz up
the state-transition rule so that the four symbols of our system always
transform in the following way:

0 — 1{0]1[0)0
1511

[

1]
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To see how this rule works, suppose we start with the string consisting
of the single symbol 0. With the above transformation rules, the first
three steps of this CA turn out to be

0:0
1 : 1[o]1{0l0
2 - 11]1[o]1[0j0111[1(011[0}011 (011 (010

1]

t
t=
t=
This still doesn’t look much like a plant. But we can convert strings
of this type into a treelike structure by treating the symbols 0 and 1
as line segments while regarding the left and right brackets as branch
points. '

One way to get something that looks faintly plantlike out of all this
is to leave the 1-segments bare while placing a leaf at the end of each
0-segment. So, for instance, if we have the string 1[0]1[010, its stem
consists of the three symbols not in brackets. These are a 1-segment
beneath another 1-segment, which in turn is topped off by a
0-segment. Two branches, each with a single 0-segment, sprout frgm
this string. The first branch is attached above the first segment, while
the second branch occurs after the second segment. As for the
direction of the branch, the simplest convention is to specify that for
any given stem, the branches shoot off alternately to the left and to
the right. Figure 6.5 shows the first three generations of a plant
obtained by using the L-system grammar given above, together with
the foregoing rule regarding leaves and branches. The reader will find
much more realistic examples of how L-systems can mirror the
development of plants in the references cited in the To Dig. Deeper
section.

With the idea of rules of this sort allowing a CA to change its
configuration as it goes along, it’s only a small step to the consideration
of whether lifelike objects might be created on the grid of appropri-

3

Q
(\ Fiount 6.5.

2 THE FIRST THREE GENERATIONS OF AN
L-SYSTEM PLANT
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ately specified CA. Oddly enough, this was the question that intrigued
John von Neumann nearly fifty years ago. And he developed many of
the properties of CA to answer it.

THAT'S LIFE?

In a lecture at Caltech in 1948, John von Neumann used the idea of a
CA to lay down the conditions that any entity would have to satisfy
if it were to be capable of building a copy of itself (i.e., self-
reproduction). What concerned von Neumann was the kind of logical
organization and functional activities an object would have to possess
to be able to build a copy of itself. Thus, von Neumann wanted to
abstract from the processes of self-reproduction in nature the Jogical
form of the reproduction process—independent of its realization in
any particular material structure. '

To solve this problem, von Neumann created a universal Turing
machine consisting of a 2-D CA having 29 states per cell. His idea was
to represent the initial machine as a particular pattern in this CA array.
Self-reproduction would then be said to have occurred if a rule of
state transition (using the S-cell von Neumann neighborhood) could
be found that would cause the initial pattern to be duplicated
elsewhere in the array. But for genuine self-reproduction, the instruc-
tions for building the copy have to be contained in the initial
configuration itself. We'll return to this point in 2 moment.

Von Neumann showed how his 29-state CA could be capable of
universal construction, from which self-reproduction followed as a
special case when the machine described on the constructor’s input
was the constructor itself. Unfortunately, the details of von Neumann’s
argument are far too technical to enter into here, But the curious reader
can find the complete story in the items cited in the To Dig Deeper
section. . ’

The key to the self-reproduction problem turns out to be the way
we handle the issue of copying the “blueprint” of the machine.
Suppose we've succeeded in building a universal constructor. We then
feed the plans for the constructor back into it as input. The constructor
will then reproduce itself. But it will not reproduce the instructions
describing how to build itself. This is a trivial and nonperpetuating
type of reproduction, and not at all what we have in mind when we
speak of a self-reproducing machine. How do we arrange it so that
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the blueprint, as well as the constructor, is faithfully reproduced? This
was the big difficulty that von Neumann had to surmount. His solution
involved using the information on the blueprint in two completely
different ways.

Von Neumann’s way out of the blueprint dilemma was to build a
“supervisory unit” into the constructor. This unit functioned in the
following manner: Initially the blueprint is fed into the constructor as
before, and the constructor reproduces itself. At this point the super-
visory unit switches its state from construction-mode to copy-mode
and proceeds to copy the blueprint as raw, uninterpreted data. The
copy is then appended to the previously produced constructor (which
includes a supervisory unit), and the self-reproducing cycle is com-
plete. The key element in this scheme is to prevent the description of
the constructor from becoming a part of the constructor itself (i.e., the
blueprint is located outside the machine and is then appended to the
machine at the end of the construction phase by the copying operation
of the supervisory unit).

The crucial point to note about von Neumann’s solution is the way
information on the input blueprint is used in two fundamentally
different ways. It’s first treated as a set of instructions to be interpreted.
These instructions, when executed, cause the construction of a
machine somewhere else in the CA array. Thereafter, the information
is treated as uninterpreted data, which must be copied and attached
to the new machine. These two different uses of information are also
found in biological self-reproduction: the interpreted instructions
correspond to the process of genetic translation, while the blind
copying of the uninterpreted data corresponds to the process of
genetic replication. These are exactly the processes involved in the
operation of every living cell, and it’s worth noting that von Neumann
came to discover the need for these two different uses of information
several years before their discovery by biologists working on the
mysteries of DNA. The only difference between the way von Neumann
set things up and the way nature does it is that von Neumann arbitrarily
chose to have the copying process carried out after the construction
phase, whereas nature copies the DNA early on in the cellular
reproduction process.

As noted above, genuine self-reproduction has to take place in a
very particular way. But there are many types of “pseudo” self-
reproduction. A simple example is the CA defined by the Mod 2 Rule
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using the von Neumann 5-cell neighborhood in the plane. In thjs case
starting with a single ON cell, a little later we will see 5 isolated cells’
each of which is also ON. Clearly, this doesn't fit with the everyda :
notion of self-reproduction, since the initial configuration was repro}.,
duced by the state-transition rule rather than by following a set of
rules for reproduction contained within itself. So reproduction here is
due solely to the transition rule built in to the “physics” of the
environment and in no way resides within the configuration itself.

It turns out that simpler machines than von Neumann'’s can also be
shown to be capable of self-reproduction. So the question arises, How
simple can a self-reproducing machine be? This is the flip side of von
Neumann’s original question, which involved consideration of what
would be sufficient for self-reproduction. Now we are concerned with
what's necessary. As a concrete example of one such simple self-

reproducing CA, let’s look at the what is probably the most well-
chronicled CA of all time.

The Game of Life

In the October 1970 issue of Scientific American, columnist Martin
Gardner introduced the world to a simple board game that has come
to be called the Game of Life. In actuality, Life is not really a game,
since there are no players; nor are any decisions to be made. Rather
it is a cellular automaton. In fact, in the terms we've been using in this
chapter, Life is a 2-state, 2-D CA.

The rule of state transition for the Life CA was laid down by the
game’s inventor, Cambridge University mathematician John Horton
Conway. It uses the Moore neighborhood (i.e., all 8 adjacent cells),
specifying the following fates for the central cell of each neighborhood:

1. The cell will be ON in the next generation if exactly 3 of its
neighboring cells are currently ON. .

2. The cell will retain its current state if exactly 2 of its neighbors are
ON.

3. The cell will be OFF otherwise.

This rule is Conway’s attempt to balance out a cell’s dying of “isolation”

if it has too few living neighbors and dying of “overcrowding” if it has
too many.

Figure 6.6 shows the fate of some initial triplet patterns using this
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FIGURE 8.6. SOME TRIPET HISTORIES IN THE GAME OF LIFE

rule. We see that the first three triplets die out after the second
generation, whereas the fourth triplet forms a stable Block, and the
fifth, termed a Blinker, oscillates indefinitely. Figure 6.7 shows the life
history of the first three generations of an initially more-or-less
randomly populated life universe.

Of considerable interest in the Life CA is whether there are initial
configurations that are eventually copied elsewhere in the array. The
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FIGURE 6.7. A TYPICAL GAME OF LIFE HISTORY

first example of such a configuration is the Glider, which is displayed
in Figure 6.8.

In the early days of Life, researchers conjectured that because of
the overpopulation constraint built into the CA rule, there were no
configurations that could grow indefinitely. Conway offered a $50
reward to anyone who could produce such a configuration. The
configuration that won the prize, termed a Glider Gun, is depicted in
Figure 6.9. Here the Gun, shown at the lower left of the figure, is a
spatially fixed oscillator that repeats its original shape after thirty
generations. Within this period, the Gun emits a Glider, which
wanders across the grid and encounters an Eater, which is shown at
the top right of the figure. The Eater, a fifteen-generation oscillator,
swallows up the Glider without undergoing any irreversible change
itself. Since the Gun oscillates indefinitely, it can produce an infinite
number of Gliders, implying that configurations that can grow indefi-

nitely do exist. :

While the Life rule has led to a veritable comucopia of strange and
captivating patterns, our concern here is with the issue of self-
reproduction. So I'll leave it to the reader to consult the references
cited in the To Dig Deeper section for a more complete account of
these wild and wondrous goings-on.

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5
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FIGURE 6.8. THE GLIDER
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FIGURE 6.9. THE GLIDER GUN

Earlier we noted that it's customary to require that the reproduqion
of any genuinely self-reproducing configuratio'n must be ac.tx\fe.ly
directed by the configuration itself. Thus we require that responsibility
for reproduction reside primarily with the parent structure—but nf)t
totally. This means that the structure may take advantage of certain
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features of the transition rule’s physics, but not to the extent that the
structure is merely passively copied by mechanisms built into the
transition rule alone. Von Neumann'’s requirement that the configura-
tion make use of its stored information as both instructions to be
interpreted and as data to be copied provides an appropriate criterion
for distinguishing fake self-reproduction from the real thing. It's
appropriate to close this discussion of emergence and self-reproduction
by outlining the manner in which Conway showed that the Life CA
rule admits configurations that are capable of self-reproduction in
exactly this sense. With this bit of mathematical chicanery, Conway
also showed that the simple Life rule is actually complicated enough
to allow us to compute any quantity that can be computed. So it is
another example of what in Chapter Four we called a universal Turing
machine.

Conway'’s self-reproduction proof is based on the observation that
Glider Guns (as well as many other Life objects) can be produced in
Glider collisions. He then showed that large constellations of Glider
Guns and Eaters can produce and manipulate Gliders to force them
to collide in just the right way to form a copy of the original
constellation. The proof begins not by considering reproduction per
se but by showing how the Life rule allows one to construct a universal
Turing machine. Since the Life universe consists of an array of ON-OFF
squares on an essentially infinite checkerboard, what this amounts to
showing is that one can construct a Life pattern that acts like a
computer. This means that we start with a pattern representing the
computer and a pattern representing its programming. The computer
then calculates any desired quantity, which must then be able to be
expressed as a Life pattern itself. For numerical computations this
might involve having the Life computer emit the requisite number as
patterns of a particular type or, perhaps, arranging to place the
required number of patterns at some prespecified region of the display
area.

The key to realizing the Life computer is the demonstration that any
binary number can be represented by a Glider stream and that other
Life patterns can be arranged to function as AND, OR and NOT gates,
the building blocks needed for any computer. The biggest problem
with these constructions is showing how the various streams repre-
senting the “wires” of the Life computer can be made to interpenetrate
without losing their original structure. While wires and logic gates are
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all that's needed for any real-world computer, a universal computer
needs something more: a potentially infinite memory! Conway’s
solution is to use the Life configuration termed a Block to serve as an
external memory element. The Block consists of a 2 x 2 array of ON
cells (see the fourth row of Figure 6.6) with the property that it is a
so-called still life (i.e., it remains unchanged under the Life rule). The
idea is to use the Block as a memory element outside the computer
pattern and to use the distance of the Block from the computer to
represent the number being stored. To make this scheme work, it’s
necessary to devise a procedure to move the Block, even though it's
not in the computer. This can be accomplished by a tricky set of
Glider-Block collisions. The end result of all these maneuvers is
Conway’s proof that the circuitry of any possible computer can be
translated into an appropriate Life pattern consisting only of Guns,
Gliders, Eaters and Blocks. But what about the other part of the
self-reproduction process, the universal constructor?

The second part of the Conway proof is to show that any conceiv-
able Life pattern can be obtained by crashing together streams of
Gliders in just the right way. The crucial step in this demonstration is
to show how it’s possible to arrange to have Gliders converge from
four directions at once in order to properly represent the circuits of
the computer. The ingenious solution to this seemingly insoluble
problem, termed side tracking, is much too complicated to describe
here, but it provides the last step needed to complete Conway’s
translation of von Neumann’s self-reproduction proof into the lan-
guage of Life.

‘What would a self-reproducing Life pattern look like? For one thing,
it would be BIG. Certainly it would be bigger than any computer or
video screen in existence could possibly display. Moreover, it would
consist mostly of empty space, since the design considerations require
the use of extremely sparse Glider streams. The overall shape of the
pattern could vary considerably depending upon design considera-
tions. However, it would have to have an external projection repre-
senting the computer memory. This projection would be a set of
Blocks residing at various distances outside the pattern’s computer.
Moreover, at least one of these Blocks would be special in that it
would represent the blueprint of the self-reproducing pattern. (In
actuality, the blueprint is the number represented by this Block.) For
a detailed description of how the reproduction process works, the
reader is referred to the literature cited in the To Dig Deeper section.
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Now let me close this discussion of Life by noting the sobering
estimate for how big such a self-reproducing Life pattern would have
to be. Rough calculations suggest that such a pattern would probably
require a grid of around 10™* cells. By comparison, a high-resolution
graphics terminal for a home computer can display around 10° cells
(pixels). To ‘?et some feel for the magnitude of this difference, to
display a 10" cell pattern, assuming that the pixels are 1 mm?, wc;uld
require a screen about 3 km (about 2 miles) across. This is an area
about six times greater than Monaco! Thus, we can safely conclude
that it is highly improbable that Conway’s vision of living Life patterns
will ever be realized on any real-world computer—even those likely
to emerge from the rosiest of estimates of future computer technology.
Too bad. It would have been fun to see these artificial lifeforms
frolicking about in their checkerboard universe.

While we may not be able to display a living Life form, what our
CA rules do often display is triangular patterns like those of the Type B
attractor shown in Figure 6.4. Careful analysfs shows that these

_ triangles are formed when a long sequence of cells, which suddenly

all assume the same value 1, is progressively reduced in size by local
fluctuations induced by the particular CA rule. What is even more
interesting is that if we keep track of the density of triangles having
base length 7, we find that for sufficiently large arrays this density is
independent of both the initial configuration and the rule being used.
In short, there seems to be a universal law goverriing the number and
size of these triangles. This observation leads us to consideration of
another kind of universal product of self-organizing systems.

THE MOST COMPLICATED THING IN THE WORLD

In 1733, Jonathan Swift commented on the infinitude of nature with
the following bit of doggerel:

So, Nat'ralists observe, a flea

Hath smaller fleas that on him prey,
And these have smaller fleas to bite 'em,
And so proceed ad infinitum.

In ‘a. paron of this Swiftian verse, Lewis F. Richardson, the pioneering
spirit behind today’s computational approaches to weather forecast-
ing, wrote of turbulent fluid flow that
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Big whorls have little whorls

Which feed on their velocity,

And little whorls have lesser whorls,
And so on to viscosity.

These two light-hearted poems express another way that surprising
behavior can occur as a consequence of the interaction among simple
parts of a complex system. Rather than arising from mismatches in
dimensional levels, as with the examples studied in the preceding
chapter, these kinds of surprises come about because there is no
obvious and natural scale against which to measure the behavior of
many of the processes arising in the real world. What's observed on
the largest scale of measurement repeats itself in an ever-decreasing
cascade of activity at finer and finer resolutions. This sort of surprise
arises in systems that are termed self-similar. .
Experiencing the world ultimately comes down to the recognition
of boundaries: self/non-self, before/after, inside/outside, subject/ob-
ject and so forth. And so it is in mathematics as well, where we're
continually called upon to make distinctions between categories—
stable/unstable, computable/uncomputable, linear/nonlinear, real/
complex—distinctions involving the identification of boundaries. In

particular, in geometry we characterize the boundaries of especially -

important figures by giving them names like circles, triangles, squares
and polygons. But when it comes to using boundaries to describe the

natural world, these simple geometrical shapes fail completely. ASIBM -

scientist Benoit Mandelbrot has expressed it, “Mountains are not
cones, clouds are not spheres, and rivers are not straight lines.” ’

To illustrate the point, Figure 6.10 shows two measurements of the
coastline of Britain taken by Heinz-Otto Peitgen and his co-workers
using measuring sticks of lengths 100 km and 50 km. Perhaps
surprisingly, when we add up the length of Britain’s coastline under
these two different sets of measurements, we arrive at radically
different estimates: about 3800 km when the scale unit is 100 km,
nearly 6000 km when the scale is halved. Thus, as our measuring stick
gets shorter, the length of the coastline seems to become longer!
Intuitively we can understand this paradoxical result by recognizing
that small bays of different sizes are overlooked when we use a ruler
that's too long. But to get a better idea of what's going on, let’s follow
Peitgen’s lead and do the same experiment for a circle.
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Scale: 100 km Scale: 50 krﬁ

FIGURE 6.10. THE COASTLNE OF BRITAIN AT TWO DIFFERENT SCALES

' Suppose we consider a circle of diameter 1000 km, so that its
c1r.cu.mferer1ce is ropghly the same size as the length of the coast of
Britain. One way to estimate the circle’s circumference is to inscribe
a. regular polygon (one whose sides are of equal length) within the
circle and then add up the lengths of the sides of this polygon. B
choosing polygons of greater and greater number of sides .thi}s’
sclTeme, which can be traced to the ideas of Archimedes, leads t’o the
estlmz.ltes shown in Table 6.1. Surprise! In measuring the c’ircle’s length
by using a measuring stick with finer and finer resolution (the length
of the side of the inscribed polygon), the estimate does not go shootin
off to infinity as it did with the coastline of Britain. Rather, it settlei
;iown to exactly what we expect it to be; namely, the exac’:t circum-
ke;;r‘lce of the circle (which happens to be 21 x 500 km = 3141.59

§9 what's the difference between these two experiments? Why did
refining the unit of measurement lead to totally different results i: one
case while converging to the one true number in the other? Basicall
the answer resides in the degree of “wiggliness” in the two curvzs’
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TABLE 6.1.
LENGTH OF A CIRCLE BY INSCRIBED POLYGONS
Sides of Polygon  Length of Side (hm)  Estimated Circle Length (hm)
<] 500.0 2,600
12 258.8 3,106
24 130.5 3,133
48 65.4 3,139
96 327 3,141
192 16.4 3,141

being measured. The coastline of Britain has a lot of wiggles; the circle
has none. We can get a quantitative feel for this difference by plotting
the length estimates versus the scale of our measuring stick. Fora
variety of technical reasons, it turns out to be especially convenient
to make this plot using the logarithms of both the estimated lengths
and the reciprocal of the measuring unit (since the shorter the basic
unit of measurement, the greater the precision in the estimated length).
Figure 6.11 shows this log-log plot for the coastline and the circle.
Here both the quantity u (the length estimate) and the number s (the
scale of measurement) are taken in units of 1000 km. What we see’
from Figure 6.11 is that the regular curve (the circle) plots as a
horizontal straight line, while the wiggly curve (the coastline) corre-

sponds to a slanted straight line. From this, one might suspect that the '

greater the slope of the straight line, the more wiggly the curve. Figure
6.12, showing a similar calculation for several other geographic
perimeters, lends support to this conjecture. And herein lies a tale.

The kind of curve describing the coastline of Britain is what in 1975
Benoit Mandelbrot christened a fractal. Fractals are curves that are
irregular all over. Moreover, they have exactly the same degree of
irregularity at all scales of measurement. So it doesn’t matter whether
you look at a fractal from far away or up close with a microscope—in
either case you'll see exactly the same picture. If you start looking
from a distance (i.e., with a “long” ruler), then as you get closer and
closer (with shorter rulers) small pieces of the curve that looked like
formless blobs earlier turn into recognizable objects, the shapes of
which are the same as that of the overall object itself.

There are many examples of fractals in nature: ferns, clouds,

log(u)
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lightning bolts, coastlines, river basin networks and galaxies, to name
but a few. We'll see some of these later. For now, let’s look at a simple
example of a fractal pattern called the Sierpinski gasket. The basic idea
underlying the construction of this strange object is illustrated in
Figure 6.13. The gasket is formed by starting with the black equilateral
triangle at the top. The white triangle is then cut out of the center,
leaving three smaller black equilateral triangles. This excision process
is then repeated on the three black triangles, obtaining nine new black
triangles. This process is then repeated indefinitely, doubling the detail
at each stage. The final pattern is the famous Sierpinski gasket.

It turns out that there’s a much more intuitively satisfying way of
producing the Sierpinski gasket that enables us to see a most remarkable
property of this figure. Think of a photocopy machine with a lens that
reduces the original by one-half. Using this machine repeatedly to
produce a sequence of images of the famous mathematician Karl
Friedrich Gauss, we arrive at the picture shown in Figure 6.14. Now
let's modify this single-reduction copy machine, giving it three lenses

o 4

b4

v

.iz'v'v
£ 4

FIGURE 6.13. THE SIERPINSKI GASKET
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FIGURE 6.14. SINGLEREDUCTION COPY MACHINE IMAGES OF GAUSS

instead of just one. The new machine is shown in Figure 6.15. Again
we assume that each lens reduces the part of the image it' sc.anf b

th'e same factor of one-half. Now we put in an image and ask wha};
will emerge from the sequence of iterations as we run this feedback
syste'm. You might think that the images will get smaller and smaller—
as thl} tl.le images of Gauss—until they fade away into a single point

But this is not what happens at all! Figure 6.16 shows the end Ir)esul£
of such an iteration starting with a single rectangle, where we color
g:z }rle::i;xceq copies according to the respective lens s;rstem from which

; ) )
cach < é)l)é r;igsrl(()id;;:se.tj[’he figure the three-lens machine generates

It's tempting to think that the Sierpinski gasket emerges from the

FIGURE 6.15. A MULTIPLEREDUCTION COPY MACHINE WITH THREE LENSES
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- L

FiGURE 6.168. ITERATION OF A RECTANGLE WITH THE THREEAENS COPY
MACHINE

three-lens machine simply because we started our process v.vxth a
rectangle. But this isn’t the case. In fact, we can start with ar.1y 1mage
whatsoever and end up at the same place. To illustrate t.hls ‘crucnal
point, consider starting with the letters NCTM. The §uccessnve 1terat.es
of this starting image are shown in Figure 6.17. Again we end up with
the Sierpinski gasket. This suggests that there is ‘sorflethmg uqxversal
about the Sierpinski gasket. Unfortunately, this is not q}nte' the'
situation. But what is true is that a closely related object, the Sierpinski
carpet, does have the remarkable universality property thaF any
one-dimensional object whatsoever can be hidden. somewhc?re in the
carpet. The construction of the Sierpinski carpet is shown in I'*l.gure
6.18. For more information on this point, and for a wealth of additional

detail on these fascinating objects, the reader is urged to consult the -

material cited in the To Dig Deeper section.

o
NCTUNCTH it

A £ £

FIGURE 6.17. ITERATION OF THE IMAGE NCTM WITH THE THREELENS COPY
MACHINE
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FIGURE 6.18. CONSTRUCTION OF THE SIERPINSKI CARPET

The Sierpinski gasket and carpet display what we call linear
self-similarity, in the sense that any part of the object is exactly like
the whole. But the most important fractals are not this rigidly
self-similar, including the most famous fractal of all, the celebrated
Mandelbrot set. No account of fractals can avoid discussion of this
“most complicated object in the world.”

Mandelbrot, Julia and Domains of Attraction

We have seen in earlier chapters that the most important thing one
can know about a dynamical system is its attractors. Associated with
each attractor is a set of initial states whose trajectories end up in that
attractor under the action of the dynamical system’s vector field. These
starting points are called the domain of attraction of the attractor. In
the Beer Game example of Chapter Three, we saw that the boundary
of the domain of attraction can be a very complicated curve or surface.
Here we'll see that even for the simplest kind of nonlinear dynamical
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process, one involving only the operations of squaring a number and
addition, the boundary of the domain of attraction can be as compli-
cated as it's possible to be.

The complex plane consists of all numbers of the form z=a + bi,
where a and b are real numbers and i is the square root of —1. Here
a is called the real part of z, while b is the imaginary part. Fix a point
¢ in the complex plane. Now construct a sequence of complex
numbers by the rule

zk=zi_1+c, z=0 k=1,2... (*)

So for each choice of the parameter ¢, we have a different dynamical
system. If you happen to be wondering why we chose this particular
system, the reasons are twofold: (1) it's about as simple as a dynamical
process gets, involving just the single operation of squaring a number
and adding it to its predecessor, and (2) it leads to interesting and
unexpected results.

Looking at the dynamical system (+), it’s clear that for some choices
of the parameter ¢ the sequence {z,} will diverge to infinity. The point
¢ = 2 is such a case. But for other choices, like ¢ = 4, the sequence
remains bounded. Let's now form a set M in the complex plane in the
following way: we put the number ¢ in the set M if the sequence {z;}
does not go off to infinity for that value of ¢; otherwise, ¢ does not
belong to the set M. So, for instance, the point 2= 2 is not in M, while
the point z = i does belong to it. The set M, called the Mandelbrot set,
is shown in Figure 6.19.

It has been shown that if the starting point 2, lies in the interior of
the Mandelbrot set, the dynamics (+) generates a trajectory that is
orderly and well-behaved for any value of ¢. But if z; lies outside M,
the trajectory—while perfectly deterministic—is wild and disorderly,
wandering all over the complex plane. The boundary of M, which
separates the orderly and disorderly behaviors, turns out to be
unbelievably messy. As one might surmise from inspecting Figure 6.19,
new copies of the entire Mandelbrot set continue to “bud off” from
the original at all scales of observation. Furthermore, there are many
additional structures that appear at various magnification levels. To
illustrate, Figure 6.20 shows a magnified view of part of the boundary
of the set M. New structures continue to appear as one goes to higher
and higher magnifications, the set M remaining forever intricate on
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FIGURE 6.19. THE MANDELBROT SET

any scale. It’s this kind of never-ending sequence of new patterns that

leads many to claim that the Mandelb i
. rot set is-the most i
object known to humankind. complicated

FIGURE 6.20.
MAGNIFIED VIEW OF PART OF THE
BOUNDARY OF THE MANDELBROT SET
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To add further ammunition to this claim, in 1991 the Japanese
mathematician Mitsuhiro Shishikura proved that the dimension of
the boundary of the Mandelbrot set is 2. This means that not only is
the boundary of M indeed a fractal, since the set itself resides in the
two-dimensional plane, but that it “wiggles” as much as any curve in
the plane possibly can. In fact, it wiggles so much that its dimension
is the same as that of the plane itself. So if you measure the complexity
of a curve by its irregularity, or wiggliness, then no curve can be more
complex than the boundary of M. Note, however, that this does not
mean that the boundary of M is a curve that fills up the plane. Merely
having dimension 2 is not enough for this, as is shown by the Sierpinski
carpet in Figure 6.18, which is a kind of two-dimensional sponge that
is all “holes.” Whether or not the boundary of the Mandelbrot set fills
up a two-dimensional continuum in the plane remains, at present, an
open question.’

The Mandelbrot set can be thought of as characterizing the domain
of attraction of the starting point z, = 0 for the family of maps z— 4,
each member of which is “named” by a particular value of ¢. But this
is not usually what we mean when we speak of the domain of
attraction. Normally, we consider a single system having one or more
attractors, and we want to characterize those initial states leading to
the different attractors. This was the situation, for example, with the
chaotic examples discussed in Chapter Three. Just as with those
examples, if a system has a strange attractor, the boundary of that
attractor has remarkable fractal properties.

To see this, let’s go back to the Mandelbrot mapping considered
earlier:

z,e=zﬁ_1+c, k=1,2,...

We now fix the parameter value at ¢ = -1 and look at the set of initial
points 2; leading to trajectories {2;} that remain finite as & gets larger
and larger. The boundary of the black part of Figure 6.21 shows these
points, while the black interior is the strange attractor for this system.
The set of boundary points is called the Julia set of the system, while
the filled-in black part is called the filled-in Julia set. For the sake of
completeness, let’s note that the complement of the Julia set (the white
part) is called the Fatou set. These names owe their origin to the French
mathematicians Gaston Julia and Pierre Fatou, who studied this kind
of set in the early part of this century.
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FIGURE 6.21. THE JULIA SET OF THE MAP 7 — 7 — 1

It's interesting to see what happens to the Julia set for the system
(¢8) when ¢ = 0. In that case, the iterates are just the powers z, 2 , z4,
2z and so on. So if the initial point z, lies inside the circle in the
complex plane centered at the origin and having radius 1, then its
trajectory remains bounded. But if the starting point is outside this unit
circle, the trajectory flies off to infinity. Finally, if the starting point lies
on the boundary of the circle, the successive points move around on
the circle indefinitely. Therefore, for this system the Julia set is simply
the unit circle. But amazing things start to happen to the Julia set when
we let ¢ move away from zero. .

For even the smallest nonzero value of ¢, the Julia set gets
distorted—but not into a smooth, approximately circular curve. In-
stead the curve becomes a fractal. Figure 6.22 shows a sequence of
distortions of the original unit circle as we gradually increase the
magnitude of ¢, going from the “almost circle” in (a) to the so-called
Douady rabbit in (b) and on to a set of disconnected islands in (c).

So the rule (+), simple as it is, shows us that the boundary of the

FIGURE 6.22, THE JULIA SET FOR VARIOUS NONZERO VALUES OF ¢
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domain of attraction of a strange attractor can be just about as
complicated as a mathematical object can get. But to get a real feel
for the depth and beauty of these objects, the more detailed literature
cited in the To Dig Deeper section is must reading.

Fascinating as things like the Sierpinski gasket and the Mandelbrot
set are as objets d’art, it's at least defensible to ask about the degree
to which fractals are anything beyond mere mathematical curiosities.
Do they have any connection to everyday events? We devote the
concluding sections of this chapter to a tour of some of the more
exotic fauna frolicking in the fields of Fractal Land.

FROM BACH TO ROCK AND BACH AGAIN

Legend has it that in 1735 Swiss physicist and mathematician Daniel
Bernoulli was thrown out of the house by his father, mathematician
Johann Bernoulli, when the Paris Academy awarded them jointly a
prize for work on planetary orbits that the elder Bernoulli felt should
have been his alone. Perhaps this bit of patriarchal pique was the
spark that touched off Daniel’s interest a couple of years later in what
economists now call utility theory. In any case, by 1738 Bernoulli fils
had devised a quantity called a utility function, measuring an individ-
ual’s social well-being, which he used to characterize people’s behavior.

The basic idea underlying Bernoulli’s theory is rather simple. He
argued that the greater someone’s level of income, the less important

is any particular income shift. If we denote the income level by fand

any change in income by Af, Bernoulli’s claim is that shifts in income
for two individuals at different income levels are equivalent if the ratio
Af/f is the same for both. In other words, if I enter into a transaction
with you that involves each of us committing half our income, we
would both get the same utility from the transaction—regardless of
the absolute levels of our individual incomes.

Bernoulli went on to argue that the utility of a transaction f for an
individual is expressed by the rule U(f) = log(f/fy), where f; is the
income level needed to just sustain life. What's important about this
logarithmic form is that the logarithm is independent of the units (e.g.,
dollars, lira, horses, ounces of gold) used to measure the income level f
and does not depend on the scale (i.e., the absolute level) of the
process. Sad to say for Bernoulli, it seems that human behavior cannot
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be explained by such a simple principle as maximizing utility.
Nevertheless, the fact that both the logarithm and the relative change
in a quantity f are independent of the scale used to measure the
process leads to a phenomena termed 1/f (one over eff) bebavior,
wh‘ich does occur regularly in other areas of natural and humar:
activity.

A good example of 1/f behavior arises in linguistics. Suppose we
list the words in a particular language in decreasing order of how
often they occur in a broad sample of text taken from that language.
The rank of a word is simply its position on this list. So, by definition
the rth word on the list has rank r. Around 1950, George Zip%
discovered what's now termed Zipf’s Law, which gives a quantitative
description of how the relative word frequency is related to the word
rank. Symbolically, we can write Zipf's Law as f () ~ 1/(r log(1.78R)),
where R is the number of words in the language involved. For
example, a reasonably comprehensive dictionary of the English
language lists about R = 12,000 words. Thus, by Zipf's Law the relative
frequencies of the highest-ranking words, the, of, and and to, should
be 0.1, 0.05, 0.033 and 0.025, respectively. The logarithmic form of
Zipf's Law makes it clear that it has the 1/f form noted above.

If we graph the frequency of a word’s appearance versus its rank
in a large block of typical English text, measuring both on a logarithmic
scale, we obtain the diagram shown in Figure 6.23. A perfect 1/f law
would have a slope exactly equal to —1, which is shown as the dark
line on the graph. The relative frequencies of nine representative
English words are indicated by the arrows, showing the excellent
empirical agreement with the 1/f rule.

Interestingly enough, studies have shown that a monkey hitting the
keys of a typewriter randomly will also generate a “language” that
obeys Zipf's Law. If we plot the words of this monkey language on a
graph similar to that for English, we find the slope of the line equals
—1.068, only slightly different from the slope of a perfect 1/f phenome-
non. Manfred Schroeder has calculated that with a nine-letter alphabet
and a probability of hitting the space bar of 0.1, the median word
rank of the monkey language is an astronomical 1,895,761. This means
that if you take a word at random from a monkey text, you would
need a list containing this many words before there was a 50-50
chance of finding the randomly selected word on your list. By way of
contrast, the median word rank of English texts is around 100 for a
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typical newspaper article and ranges up to 500 for very literate writers.
Thus, the monkey language, while adhering closely to Zipf's Law, is
a very wordy language indeed.

We have seen that in describing a dynamical process, the various
time scales (frequencies) contributing to the process run across a
spectrum characteristic of the process. This spectrum shows how.the
energy of the process is distributed among different types of motion.
For instance, a simple vibrating spring has a spectrum consisting of a
single frequency. But a purely random series of numbers, coming
from, say, the movement of a gas molecule in a container, has a very
broad spectrum since many frequencies contribute to its underlying
dynamics. A fractal process, on the other hand, has no characteristic
frequency or scale, and its frequencies form what's called an inverse
power spectrum. This is usually expressed as 1/f°, where fis a
frequency and a is some positive number. When a =1, we obtain the
1/f spectrum just considered.
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At this juncture we might well inquire, What's the connection
between a fractal and a phenomenon like language that obeys a 1/f
rule? For the answer, it’s instructive to talk about another kind of
language—the language of music.

White, Brown and Pink Music

Suppose you take the score of a piece of music and calculate the
power spectrum of the relative frequency intervals x between succes-
sive notes. Let’s call this function p(x). Carrying out this exercise for
Bach's First Brandenburg Concerto, you'll find that over a large range
of intervals the spectrum has the form p(x) = ¢/x, where c is a constant
that characterizes this particular piece of music. Thus, Bach’s music
would be described as sound of the type communication engineers
term 1/f noise. (Note: Following the custom in certain engineering
circles, we are using the term nofse as being synonymous with sound.)

This very specific type of functional relationship between the
frequency and the intervals between successive notes shows up in the
spectrum of amplitudes, too, as indicated in Figure 6.24 for Bach’s
First Brandenburg Concerto. The question, of course, is why Bach
and so many other composers create music that seems to obey this
1/f rule.

Part of the answer to this puzzle lies in the observation that for any
piece of music to be “interesting,” it should be neither too regular (like
most modern rock and C&W tunes), nor too unpredictable (like many
avant garde compositions).

To see what'’s involved in satisfying these conflicting conditions,
suppose you put a tape recording of a piece of music into a recorder
and play it at double the normal speed. For most types of music, what
results is a highly distorted, squawky output from the speakers that
sounds nothing at all like music. But for some special types of sounds,
speeding up the recorder has no effect at all on the output. A good
example is purely random noise, in which every frequency occurs
with equal likelihood at any given moment. In the case of this so-called
white noise, all you hear is a steady hiss regardless of the recorder's
speed. We could also try putting what'’s called Brownian noise into
the recorder. This is a kind of sound in which there is an equal chance
of every frequency difference appearing in successive time intervals.
With this type of noise, there is a strong correlation between the
frequency at one moment and the next, but the frequency differences
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are independent. As with white noise, the output from the recorder
also sounds the same with brown noise regardless of how fast the
tape is played.

As nature would have it, this kind of output invariance is charac-
teristic of all processes obeying the inverse power-law rule outlined
above. As noted above, these processes are not characterized by any
natural frequency or scale; they look (and sound) the same on all time
scales. So when it comes to pleasing music, the relationship linking
the intervals between successive notes and how often these intervals
occur should not behave like the highly correlated, monotonically
sounding “brown” noise. Nor should the music sound like completely
unpredictable “white” noise. Just as with Goldilocks’s porridge, good
music should be not too hot and not too cold—but just right. This
suggests looking at the intermediate “pink” noise case, which happens
to correspond to a 1/f power spectrum relationship. (By all rights this
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should probably be termed “tan” noise since it's midway between
brown and white. But engineers have their own brand of logic, and
the term pink more accurately matches the color spectrum of this kind
of process than does tan.)

Figure 6.25 shows examples of music composed according to each
of these frequency patterns. Part (a) shows white music, produced
from independent notes (i.e., music in which there is no correlation,
or “memory,” between a note and its predecesser). Part (b) is brown
music, composed of notes with independent frequency increments.
Part (c) consists of pink music, in which there is a weak correlation
between the frequency and duration of successive notes. This last kind
of music is 1/f noise.

Now let’s make the connection between music and fractals. When
you look at the score of a piece of music, it’s vaguely reminiscent of
looking at the profile of 2 mountain range or, perhaps, the skyline of
a large metropolis like New York or Chicago. This kind of profile is

FIGURE 6.25. () WHITE, (B} BROWN AND {C) PINK MUSIC
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what we've termed earlier a fractal. So we could compose “mountain
music” by just assigning notes on the basis of how the profile moves
up and down. The composer Villa-Lobos actually carried out this
experiment using the mountain ranges near Rio de Janeiro. But most
such music is too “brown” to be aesthetically interesting. In other
words, most mountain ranges have profiles that are too highly
correlated. But the 1/f rule seems to govern many other natural
phenomena, including those phenomena that appear to have artistic
merit. So the connection between 1/f processes and fractals is that the
profile of naturally occurring 1/f phenomena like some mountain
ranges and coastlines turns out to be a fractal. Now let’s get back to
the music.

The similarity laws obeyed by fractal objects suggests a way of
“compressing” the music of a Bach or a Mozart to its irreducible
essence. So just as we can recognize Bob Hope by his ski-jump nose
or Alfred Hitchcock by his portly profile without having to see either
of these eminent personages in any greater detail, we would also like
to be able to single out the music of a particular composer from a
similar kind of skeletal outline.

This notion suggests the possibility of using a distilled Bach
“essence” to compose new Bach-like music, a challenge that was taken
up recently by Swiss physicist Kenneth Hsu, using the frequency and
amplitude spectrums of Bach’s music to determine each note’s rela-
tionship to its neighbors. By removing notes from several of Bach’s
inventions, Hsu found that basic patterns persisted in the fractal
reductions of the music, even if what remained contained as little as
one sixty-fourth of the original notes. Thus, music recognizable as
Bach survives fractal reduction. In fact, to some ears this “reduced
Bach” gives the impression of an economy of frills and ornamentation.
For those of a musical orientation, Figure 6.26 shows one of these
reductions in the case of Bach’s Invention 5. With the happy thought
of an almost inexhaustible supply of new Bach-like music emerging
from the computer laboratories of the future, let's now leave the
rarefied heights of these humane arts and consider the appearance of
fractal phenomena in other areas of human concern. It's hard to think
of an area more people have spent more time worrying about than
the world of easy money. In particular, our next story deals with the
surprising appearance of fractals and self-similarity in answering the
eternal question for casino gamblers everywhere, How much should
I bet?
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FIGURE 6.26. BACH'S INVENTION 5 IN ITS ORIGINAL AND FRACTAL
FORMS

CUMBING THE DEVIL'S STAIRCASE

Nick “The Greek” Dandolos (18837-1966) was generally regarded as
the most flamboyant—if not famous—gambler of his era. He reputedly
won or lost over $500 million, beginning in 1919 when he hit the
bank at Monte Carlo three times for $20,000. The range of his
friendships included Albert Einstein, the Prince of Wales (later Edward
VIID and Jack Dempsey. And when it came to homespun philosophy,
The Greek made it into the history books with his remark that “The
only difference between a winner and a loser is character.” In
conjunction with this pretty banal observation (after all, character is
about the only important difference you can find between people
anyway), The Greek also had a practical prescription for winning at

the tables. His version of fortune’s formula is summed up in the
statement

Remember that old percentage is always back there, grinding
away. The only way you can keep it from slowly grinding your
bankroll to a pulp is to win as much as possible in as few bets as
possible.

Interestingly enough, modern mathematics and the theory of fractals
provide some ammunition backing up Nick the Greek’s claim.
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Suppose we place bets on either black or red turming up on
successive spins of a roulette wheel. Then our probability of success
on any single spin of an American wheel with its twin zero slots is
p = ¥ (European roulette wheels have only a single zero). Moreover,
let’s assume we start with $100, hoping to run it up to $20,000 before
going broke. Classical arguments from probability theory show that if
we follow a strategy of timid play, betting a measly fixed amount of
$1 on each play, the likelihood of attaining our goal before being
busted by the casino is about 3 chances in 10°""—indistinguishably
close to impossible. Now suppose we decide to wager a fixed amount
of $10 per play. In this case, the chances of winning twenty grand
before going broke improve to about one in 10", an enormous relative
improvement but still negligible in absolute terms. Nevertheless, the
message is clear: if at each play of the game you have less than a
50-50 chance of winning, larger bets improve the chances of reaching
a set goal before going broke. This leads to the strategy of bold play.

Following the dictates of bold play, on each turn of the wheel we
bet our entire bankroll if that amount is not greater than half the goal
(in this case $20,000). Otherwise, we bet the difference between the
goal and the amount of money we currently have in hand. It can be
shown that this strategy maximizes the chances of reaching the goal
in a fair game (one in which there is a 50 percent chance of success
on each trial). In roulette, of course, the chances are not equally
balanced in this way, since the likelihood of success on any trial is
18,4, which is less than 0.5. For the specific case we're looking at here,
starting with $100 and following the strategy of bold play, there are
three chances in a thousand of reaching the $20,000 plateau before
going broke—about ninety orders of magnitude better than the
chances when using timid play.

To analyze bold play, let’s normalize things so that our bankroll
ranges between 0 and 1, the goal being to reach 1 before going bust.
Let m(x) be the likelihood of success when starting with an initial
amount x, and let p represent the probability of winning on any single
play of the game. Bold play says that if the initial bankroll, x, is less
than 0.5, you should bet everything you have. But if our starting
bankroll x is greater than or equal to 0.5, we should bet 1 - x. In the
first case, if we're to reach our goal of 1, we have to win on the first
play (with probability p) and then, starting from the new bankroll of
X + x = 2x, we must go on to eventual success (which, by definition,
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has probability 7(2x)). Thus, the product p x m(2x) is the prob-
ability of winning on the first play and going on to reach the goal. A
similar, but slightly more involved, line of reasoning leads to the
quantity p + (1 - p) x m(2x — 1) for the likelihood of reaching the
goal when starting with a bankroll x that is greater than 0.5. Symboli-

cally, we can summarize the situation thus far in the following pair of
equations:

m (%) = pm (2x) for0<x<05
p+(1-pm@2x—-1) for05<x<1

The function m(x) is shown in Figure 6.27 for a situation in which the
probability of success on any single play of the game is p = 0.25.
Looking carefully at Figure 6.27, we note the following two important
properties of this function:

1. The function m(x) increases steadily with x. So the greater our
initial bankroll, the better our chances of reaching the goal. While
this is fairly obvious on the basis of in-the-casino empirical
results, it’s reassuring to see the mathematics reflecting this
commonsense reality.

2. The probability of success increases only on a set of capital levels
x having zero measure in the interval between 0 and 1. This
means that if the probability function m(x) were to be magnified,
we would see it as composed of many small “stair steps.” And the
only places where the function increases is at those points where
we move from one step to the next. It can be shown, however,
that this set of points has a negligible (actually, zero) measure in
the unit interval. Such a curve is what's called a devil’s staircase.
Thus, it's only at a mathematically negligible set of bankroll levels
that the chances of success can be improved by increasing the
starting bankroll.

OK, so what does the function m(x) have to do with self-similarity?
Let’s assume that the bankroll, x, is less than 0.5, so we're in the first
case discussed above. Then the connection with self-similarity comes
in by noticing that if we divide x by 2 and multiply m(x) by p, we
reproduce the left half of Figure 6.27. So the probability function m(x)
is what's called self-affine. And it is exactly this property that gives
rise to the fractal-like devil’s staircase type of structure just noted. But
the flow of money in the casino is nothing compared to what moves
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about the world’s financial systems each day. So let’s leave the felt-top
jungles and cast our gaze in the direction of Wall Street.

And So it Flows

Unlike money, water has a tendency to flow from where it’s abundant
to where it isn’t. But just like the ebb and flow of prices on speculative
markets or the fluctuations of a gambler’s bankroll, water also displays
fractal behavior in its multifarious meanderings. So in preparation for
tackling the problem of stock price movements and the fluctuation of
currency exchange rates, let’s look at how hydrologists have grappled
with the question of measuring the fractal nature of the ups and downs
of water reservoir levels.

Suppose we have a reservoir that’s fed by the discharge of water
from a lake. In any given year the reservoir receives an influx from
the lake and a regulated volume of water is released. If we let x(»
denote the inflow in year ¢, then the average inflow over a period of
T years is simply (1/)x(1) + x(2) +- - -+ x(T)]. Call this average
inflow Xr. Now define the departure of the inflow from this average
over a t-year time horizon to be X(¢, T) =[(x(D) ~xp + (x(2) - xp +- - - +
(x(® — xp). The difference between the minimum and the maximum
accumulated inflow over a period of Tyears is what we call the range,
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FIGURE 6.28. A WATER RESERVOR WITH INFLOW x{f) AND RANGE Ry

denoted by Rr. This overall situation is shown schematically in
Figure 6.28.

It's clear, I think, that the range depends on the time period T and
that it can only increase with longer and longer time periods 7. In the
late 1940s, hydrologist H. E. Hurst investigated many natural phenom-
ena, like river discharges and tree ring growth, using the range Ryand
the sample standard deviation

Sr={Q/T) (1) - %" + (@) - Z? + - - - + (D) - TP} 2

What Hurst discovered is that a large number of natural processes
seem to be governed by a simple relation involving what's now called
the rescaled range, defined by the dimensionless ratio Ry/S;: This
quantity, in effect, scales the range by taking the standard deviation
as the unit of measurement.

Hurst’s results showed that in a great many phenomena, ranging
from flood levels on the Nile to trends in global temperature, changes
seem to obey the empirical relation Ry /S;-= T, where H is a number
now called the Hurst exponent. It can be shown that when the
individual measurements x(#) are independent from one time period
to the next, the Hurst exponent must tend to 0.5 for a large enough
time horizon 7. What's remarkable about Hurst’s work is that an
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impressive array of empirical evidence suggests that the Hurst expo-
nent differs substantially from 0.5 for many natural processes. So if
you believe the data, it's hard to reject the notion that there’s some
long-term “memory effect” present in processes like sunspot fluctua-
tions, river discharges and rainfall levels, all of which have values of
H differing greatly from 0.5.

To understand why these sorts of natural phenomena display
values of H differing from 0.5, Hurst dreamed up an experiment with
playing cards, the details of which are best left to the material cited
in the To Dig Deeper section. This experiment suggested that these
kinds of natural processes “remember” what's happened earlier,
thereby creating what probability theorists call a biased random walk.
For example, the discharge of a river depends not only on the current
level of rainfall but also on earlier rainfalls. Similarly, the discharge of
a lake must depend on the water present in a large drainage area. But
the amount of water in the area will increase in periods of heavy
rainfall, with the excess amount of water then being stored to
contribute to the discharge in drier periods. Of course just the opposite
occurs in periods of dry weather, when later rainfall is absorbed by
the drainage area so that the discharge remains below normal.

Analysis shows that when the Hurst exponent H differs from 0.5,

then the underlying process displays persistence on all time scales. In -

the case when H is greater than 0.5, if for some time in the past we
had an increase in rainfall levels, then we will also see an increase in
the future—on the average. Consequently, an increasing trend in the
past implies an increasing trend in the future for all processes with H
greater than 0.5. Moreover, this applies for arbitrarily large time
hortizons T, On the other hand, if the exponent H is less than 0.5, we
have antipersistence. In these situations an increase in the past implies
a decrease in the future.

Plotting the logarithm of the rescaled range Rr/Sr against the
logarithm of the time interval T results in a straight line, the slope of
which is precisely the Hurst exponent H. Figure 6.29 shows the results
of such an exercise for water level minima on the river Nile over the
years 622-1469. Here we see a value H = 0.91, strongly indicative of
persistent flooding, which of course is exactly what was observed in
these years.

Processes with H # 0.5, in which persistence or antipersistence
appears, are called fractional Brownian motions. They have infinite
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long-run correlations. In particular, past increments are correlated with
future increments. To those with a nose for money, this fact should
set the alarm bells ringing since if price movements of speculative
commodities also obey Hurst statistics, it might prove profitable indeed

to know this. So we close this chapter with an examination of this
very point. '

Persistence in the Capital Markets

For analyzing price movements on stock and currency exchanges, it's
technically convenient to use logarithmic returns rather than the actual
prices. The logarithmic return at time ¢ is defined as s; = log(py/ps-1),
where py is the actual price at time ¢. So the first step in performing a
rescaled range analysis of a financial market is to convert the actual
prices into logarithmic returns. Next we calculate the cumulative
deviation and the range for several time increments 7. For example
if we have a monthly time series involving 40 years of data, we migh;
begin with T'= 6-month increments. This would then divide the data
into 80 independent, nonoverlapping periods. We then calculate the
range and cumulative deviation from the average for each of these
periods, obtaining 80 separate R/S observations. Averaging these 80
observations finally gives an R/S estimate for the series with T = 6
months. ‘
Continuing this process for T=7, 8, . . . 240 months, we can study
how the estimate of the Hurst exponent H changes with varying time
horizons. Of course, we expect the estimate to fluctuate more as the
time horizon increases since we have fewer observations to average.
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To represent these results graphically, it's useful to plot the quantity
log T versus log (R/S) since, as we've seen earlier, the slope of that
curve is the number H. For the most part, this approach works rather
well. But the reader should be warned that there are some technical
subtleties that cannot be ignored. Some of these caveats arise from
the fact that while mathematical fractals like the Sierpinski gasket scale
forever, natural fractals like stock price curves do not. The long-
memory process underlying most systems is not infinite but finite. For
the more technical details of these matters, the reader should consult
the references cited in the To Dig Deeper section.

The diagram in Figure 6.30 shows the results of such an R/S analysis
for monthly returns on the S&P 500 index for American stocks over
the 38-year period January 1950-July 1988. Here we see that the
S&P 500 returns depart from the line H = 0.78 only after about 48
months (log;, 48 = 1.7). This tells us that a long-memory process is at
work for periods less than T = 48 months. After that point the graph
begins to follow the line H = 0.5, corresponding to a purely random
walk. Thus, returns that are more than 48 months apart have very little
correlation left, on the average. And if you think this conclusion holds
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FIGURE 6.30. ESTIMATE OF THE HURST EXPONENT FOR MONTHLY S&P 500 RETURNS
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just for an aggregate measure of the market like the S&P 500, have a
look at Figure 6.31. This shows the same long-memory effect at work
in the price history of IBM stock. Moreover, prices of other individual
stocks ranging from high-tech issues like Apple Computer to ultracon-
servative utilities like Niagara Mohawk display the same fractal
structure. .

These high estimates for H provide strong support for the claim
that the stock market is not a random walk, but rather is a fractal with
trend-reinforcing behavior. This conclusion is in direct contradiction
to the cherished Efficient Market Hypothesis (EMH), which describes
the market as a roulette wheel with no memory (i.e., a wheel with
mean-reverting behavior. The R/S analysis shows that the no-memory
independence assumption underlying the EMH should be viewed with
the kind of skepticism normally reserved for the no new taxes
campaign promises of politicians.

In passing, let me note that fractal behavior is not confined to the
American markets. Table 6.2 shows estimates of the Hurst exponent
and cycle times for the German, Japanese and British stock markets,
alongside the American. Each of them has an exponent far removed
from the pure random walk level of H = 0.5. It's not just in stock
markets where we see long-memory effects, either. The same phe-
nomena occur in the international currency markets—usually. As an
illustration, Figure 6.32 shows the R/S analysis for the daily exchange
rate between the U.S. dollar and the Japanese yen during the period
January 1973-December 1989. The same kind of picture arises with
the dollar/mark and dollar/pound rates as well. However, the situation
is rather different for the Singapore dollar.

The U.S. dollar/Singapore dollar rate is a true random variable,
having a Hurst exponent H=0.5. A little investigation into the situation

TABLE 6.2.
ESTIMATES OF H FOR INTERNATIONAL STOCK MARKETS

Market Hurst Exponent  Cycle Time (Montbs)

S&P 500 0.78 48
Germany 0.72 60
Japan 0.68 48
Britain 0.68 30
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soon turns up the reason for this anomaly. The Singapore government
deliberately manages their currency to track the U.S. dollar. As a result
of this conscious effort, any fluctuation in the exchange rate is due to
purely random fluctuations in the timing of the trades that fix the rate.
So what at first glance looked like a violation of our “Fractal Market
Hypothesis,” turns out to be a validation of it instead!

There is much more than could (and should) be said about the
fractal nature of speculative markets. Fortunately, much of it has
already been said with great eloquence and detail in the papers and
books cited in the To Dig Deeper section. So on this happy note we
conclude our discussion of how emergent phenomena in both space
and time lead to unexpected behavior of natural and human systems.
The time has finally arrived to summarize all of our deliberations about
why we should “expect the unexpected.”



SEVEN

THE SIMPLY COMPLEX

On the Creation of
a Science of Surprise

Reality is not perceived, it is conceived.
—C. S. HOLLING

Truth comes out of error more easily than out of confusion.
—FRANCIS BACON

Basic research is what I am doing when I don’t know what I am
doing.
—WERNER VON BRAUN

THE ANATOMY OF SURPRISE

One-half of the 1972 Nobel Prize in Economic Science was awarded
to Stanford economist Kenneth Arrow for his “pioneering contribu-
tions to general economic equilibrium theory and welfare theory.” Left
unmentioned in this citation was perhaps Arrow’s most long-lasting
contribution, the so-called Arrow Impossibility Theorem, which im-
poses severe constraints on the ways we can hope to divide up a
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society’s resources in a “fair” manner. The problem addressed by
Arrow’s result involves a group of people who must collectively decide
how to equitably parcel out the resources of the group. Arrow imposes
a handful of reasonable conditions on the decision process, conditions
such as if every person prefers choice A to choice B, then the group
as a whole will prefer A to B and that there can be no single person
whose choices- dominate those of the group (no dictator). The
Impossibility Theorem then states that there is no way for the group
to arrive at a collective preference that won't violate one or another
of the conditions. Put more succinctly, there can be no perfect form
of government.

This kind of impossibility result illustrates the sort of surprise that
arises out of subtleties of logic—subtleties that sometimes blow up in
your face. The only way to get around these logical time bombs in
this case is to drop one or more of the conditions, an act that would
constitute a major step away from what many idealistic dreamers see
as the very essence of the egalitarian and democratic ideal of total
fairness. Arrow’s result is not an isolated singularity, eithér. Here's
another everyday setting where surprises of this kind can surface.

‘Each year professional football, basketball and baseball teams in
the United States engage in a draft of new players, in which the teams
choose players in reverse order to how the teams finished in the
previous year’s standings. Let’s make the following assumptions about
how teams behave in such a draft:

* Strict preferences and partial ordering—Each team has a strict
preference ordering on the players considered individually. So, for
instance, if a team has the preference ordering 123456 on the six
players 1 through 6, then the subset of players {1,4,5} will be preferred
to the subset {2,4,6}. But this ordering of the individual players
generates a partial ordering by pairwise comparison on any subset of
players the team might receive in the draft. This means that the team
might not be able to rank order all possible subsets of players. For
instance, the team will not be able to decide if it prefers the set of
players {1,2,6} over the set {2,3,4}. :

* Self-interest—Each team’s goal is to benefit itself, not to hurt other
teams. Consequently, no team will select a player solely to deny that
player to another team.
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+ Independence—Each team makes its selections independently of
the other teams. In other words, there are no coalitions or hidden
agreements.

o Complete information—Each team knows the preference order-
ings of the other teams.

With the possible exception of the last assumption, each of these
conditions seems to fit perfectly well with the circumstances underly-
ing real sports drafts. For the sake of nomenclature, let’s agree to call
a team’s choice of a player sincere if from the players not yet selected,
it picks the highest-rated player on its preference list.

Assume initially that there are only two teams in the draft. Then
there exists a systematic procedure (i.e., an algorithm) for generating
sincere selections, which ensures that the resulting allocation of
players A is optimal. This means that there is no other allocation of
players A’ in which each team either gets the same players as with 4
or prefers A' to A under pairwise comparison. In short, neither team
would be better off under a different allocation. (Technically, this is
what's termed a Pareto optimal allocation.) The sincere outcome is
always optimal with regard to pairwise comparison—even when there
are more than two teams. So if each team always chooses what it
regards as the highest-ranking player left in the pool, the final outcome
will be optimal in the foregoing Pareto sense. But what about real
sports drafts, where there are usually many more than just two teams
and in which the way the teams choose may not be sincere? That's
where the fun and the surprises begin.

If there are three or more teams, use of optimal sophisticated
play—choices that are not necessarily sincere—can lead to an alloca-
tion that's not optimal by pairwise comparison. Even more strongly,
the outcome may be strictly worse than what each team would have
received if they had all chosen sincerely. So if each team follows an
individually optimal choice strategy, the final result can be what's
called a Prisoner’s Dilemma situation, in which all the teams are
worse off than if they had each chosen sincerely. A corollary of this
fact is that a team may do better for itself by occupying a later position
in the draft. For an explicit example showing how this kind of dilemma
can arise, the reader is referred to the To Dig Deeper section.

We have seen two simple choice situations—societal preferences
and sports drafts—in which the logical structure of the decision
process can lead to unexpected collective outcomes when each
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individual tries to stay true to his or her own preferences. Thus we
conclude that a major source of surprise is simply our human inability
to trace through the logical consequences of our assumptions. But
byzantine chains of logical connection are just one of the surprise-
generating mechanisms we've explored throughout the course of this
book. Table 7.1 summarizes “all the usual suspects” in our search for
the essence of surprise. Now let's revisit these surprise generators
both by way of summary and as a prelude to the consideration o%
what it would take to create a science of surprise.

Instability and Economies of Agglomeration

In the opening chapter, we saw how increasing returns to scale could
lead to an inferior technology like the VHS videocassete format beating
out a technically superior product like the Sony Betamax. But the kind
of instability leading to this sort of market “tipping” is of far broader
currency than merely as a way of settling technological wars of
attrition. Here’s an example of how the same phenomenon occurs in
regional economics. .

Ever since the ascendancy of high-tech areas like Silicon Valley in
northern California and the Route 128 corridor outside Boston, towns
throughout the industrialized world have grappled with the qilestion
of how to make the same lightning strike in their own backyard.
Reduced to its essence, the fundamental puzzle these regional plan-
ners have to solve is When do economies of agglomeration lead to a
“.Silicon Valley”—a single dominant location or region that monopo-
lizes an industry? And how do you go about creating circumstances
that give rise to such an agglomeration?

TABLE 7.1.

SURPRISE-GENERATING MECHANISMS
Mechanism Surprise Effect
Logical tangles Paradoxical conclusions
Catastrophes Discontinuity from smoothness
Chaos Deterministic randomness
Uncomputability Output transcends rules
Irreducibility Behavior cannot be

decomposed into parts
Emergence - Selforganized patterns
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W. Brian Arthur has examined this question from the point of view
of positive-feedback economics, coming to some extreme.ly interesting
and important conclusions. Basically, Arthur found that if the. returns
firms receive for locating in a particular area continue to increase
without limit as more and more firms in the industry move in, then
the industry will indeed always cluster in a single area. But t.he
particular region the firms cluster in depends both on how at.tractlve
the region is and on the historical order of entry of the firms into the
area. So there’s a chance factor that enters into the selection process
determining the specific town or region in which the entire industry
settles.

On the other hand, if returns level off as more and more firms move
into the area, then whether or not the industry will cluster i.n a
particular region depends on the exact sequence in which the various
firms enter the area. Moreover, certain sequences of entry can produce
regional sharing of the industry as if there had been no agglomeration
effects at all. What this adds up to is that increasing returns to scale
do not guarantee a monopoly outcome unless the returns are un-
bounded.

This conclusion is a bit disheartening from a regional planning point
of view since it says that unless a regional government is ready to
offer massive and continuing financial incentives to firms agreeing to
locate in their area, there is no guarantee of being able to transform
the region into a new Silicon Valley. This example shows instability,
the second of our surprise generators, coming to the fore. The
instability in this case is the unstable nature of the attractors that arise
from the locational process due to the system involving increasing
returns to scale (i.e., positive-feedback loops).

Another major obstacle to the formation of faithful models of
real-world phenomena lies in the fact that not all natural and human
phenomena are the end result of following a set of rules. Surprises
can happen when we deal with systems in which there is no
computable way to mirror in symbols the unfolding of their dynamics.

Let’s look at an example illustrating this type of surprise.

The Wave Equation and Wave Motion

Whether it’s the breaking of a wave on the beach or the transmission
of a television signal through the atmosphere, there are few physical
processes more familiar, or more important, than simple wave motion.
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Mathematical physicists have made a tidy living for centuries by
developing refined methods for solving the equations governing
transmission, reflection and absorption of waves, be they vibrations
of water, electromagnetic signals, bridge cables or a child’s jump rope.
Nevertheless, surprises are in store for those who believe that our
mathematical models of wave behavior and the real motion of a real
wave necessarily have anything to do with each other.

Recently, mathematicians Marian Pour-El and Jonathan Richards of
the University of Minnesota have shown that under reasonable
mathematical—but dubious physical—circumstances, solutions of the
classical wave equation are uncomputable. To understand the mean-
ing of this result, recall that the wave equation describes how a wave
propagates through a region of space over the course of time. To get
this wave motion started, we have to specify an initial waveform at
time zero. For example, in order to get any sound to emerge from the
string of a harp or guitar, we have to pull the string away from its rest
position. The shape of the plucked string just before we let it go is
the starting waveform, or initial state. From there, the wave equation
will tell us what form the string assumes at any future time; hence,
the tone that the string will produce.

Pour-El and Richards have shown that there exist perfectly good
mathematical waveforms that lead to uncomputable solutions of the
wave equation. So if our wavy system starts from one of these unlucky
initial wave patterns, there is no computer program or algorithm that
can track its future behavior. In short, the output of the mathematical
model necessarily parts company from the actual behavior of the
physical system—the very essence of what we mean by a surprise.
Here we see a situation in which the underlying uncomputability of
our model of the world creates an impassable barrier to the elimination
of possible surprises. And this sort of uncomputability is not just
confined to inanimate physics.

We noted in an earlier chapter arguments by Oxford physicist Roger
Penrose against the possibility of there ever existing a genuine
thinking machine. A key element in Penrose’s anti-Al claim is that at
least some human cognitive processes involve uncomputable opera-
tions. Since by definition a computer can generate only the values of
computable functions, this says that the capabilities of the human brain
must transcend that of any mere mechanism. So goes Penrose’s
argument, anyway. Of course, he is silent on the precise nature of
these uncomputable operations, burying them in one of the least
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well-understood parts of modern physics: quantum fields. Such are
the charms of unbridled speculation in modem science! So we find
uncomputability as another major contender on our list of the root
causes of surprise. Let’s cross-examine our next suspect, irreducibility.

The Five-Body Problem

Certainly the most (in)famous problem of celestial mechanics involves
the question of how bad the behavior of a collection of pointlike
masses can be if each is influenced only by the gravitational attraction
of the others. This is the well-known N-Body Problem. And the answer?
Very bad indeed!

Recently, Zhihong Xia of the Georgia Institute of Technology has
shown that a system of five or more point masses can behave so badly
that within a finite time all the particles will fly off to infinity. Xia’s
result, of course, relates to a mathematical idealization of a system of
real celestial bodies. For example, real planets are not geometrical
points. Moreover, Newton’s laws of gravitation are only an approxi-
mation to Einstein’s general theory of relativity, which contains the
equations governing actual planetary motion, especially for those
objects moving near the Sun. Nevertheless, it's from exactly this kind
of mathematical model that we form our expectations of what real
particles or planets will be doing over the course of time.

From a reductionistic point of view, the natural temptation in
studying the behavior of several bodies is to break the system up into
subproblems involving a lesser number of bodies. And, in fact, it's
possible to give a complete mathematical solution for what happens
in the case of a two-particle system. So it’s irresistibly tempting to try
to solve, say, the three-body problem by piecing together somehow
the solutions to three two-body problems. Almost from the time of
Henri Poincaré and Paul Painlevé, who proposed the original N-Body
Problem around the turn of the century, mathematicians have known
that such reductionistic approaches cannot be made to work. The
essence of the problem lies in the linkages (i.e., forces) among all the
particles. As soon as you start ignoring any of these connections, you
end up throwing out the problem with the bathwater, so to speak.

Xia’s contribution was to exhibit a specific five-body system in
which all five particles go off to infinity after a finite amount of time.
This illustrates the perhaps depressing fact that if the degree of
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connectivity in the system is great enough, some pretty awful surprises
can emerge from the behavior of a system having only a small number
of particles. It's not necessary to have a large number of interacting
particles for bad things to begin to happen; you just need the right
(or, perhaps, wrong) kinds of interactions. And speaking of interac-
tions, here comes our final contender in the surprise-generation game:
emergence. ‘

Genes and Kauffman Nets

Every human cell contains roughly 100,000 genes—including an
unknown number of regulatory genes—all switching each other on
and off in an unimaginably complicated network of interactions. Stuart
Kauffman of the Santa Fe Institute is a theoretical biologist who’s been
working for the last twenty years trying to explain the puzzling fact
that all this switching on and off doesn't lead to utter chaos, but rather
results in the cell organizing itself into stable patterns of activity
appropriate for its particular function in the organism. How is it that
this seemingly random operation of individual genes leads the cell to
configure itself into a stable, workable structure? Speaking in Darwin-
ian terms, it seems difficult to see how new types of organisms could
possibly arise out of merely random mutations and natural selection
which is the standard Darwinian party line. Something more seems t(;
be needed to account for the great diversity of living forms surround-
ing us today. The answer, according to Kauffman, lies in the marked
Preference of complex systems to spontaneously organize themselves
into persistent patterns of activity that work. As Kauffman puts it
“Darwin didn’t know about self-organization.” ’
In contrast to mainline biologists and chemists, who try to explain
the emergence of new patterns by looking at genetic regulation i‘n
painstaking biochemical detail, Kauffman has built a mathematical
model in the form of a network of interactions that mimic the genetic
regulatory activity. Suppose we have a network of N genes, each
regulated by K other genes. Thus, there are a total of 2 possible ’inputs
to each gene in the network. At each moment, Kauffman assumes that
one of these input patterns is selected at random. Moreover, he also
randomly chooses one of the 2¥ possible ON-OFF patterns yfor each
set of inputs to each gene. This pattern at each gene determines
whether the gene will be ON or OFF at the next instant. In short, both
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the wiring diagram linking the genes and the logical rule of their
operation are chosen at random. The reader will recognize these
Kauffman networks as cellular automata of a slightly different type
than those considered in the last chapter. For the genetic network, the
rule of state transition is chosen randomly at each time moment, as is
the “neighborhood” of each cell, which may be decidedly nonlocal
for these types of nets.

In numerous experiments ‘with different values of N and K, what
Kauffman saw was not total chaos at all. Rather, such networks
showed a powerful tendency toward self-organization by settling into
a small number of different periodic attractors. For example, when
K =2, the length of these cycles, as well as the total number of different
cycles, is small, typically on the order of VN in both cases. Kauffman
believes these cycles can be identified with the possible cell types that
may arise from the genetic network. So a cell type is a stable recurrent
pattern of gene expression created solely by the logical structure built
into the genetic network.

In Kauffman nets, gene A turns on gene B, which then turns on
gene C and inhibits gene D and so on. What this type of model shows
is that stable cellular types may arise spontaneously as the attractors
of a dynamical system. And it is through the subtle interplay between
the stable and unstable attractors—cooperation and competition—that
patterns of change and periods of stasis can slowly evolve. Further-
more, employing some of the arguments that we saw in the last
chapter, Kauffman’s models tell us that the formation of these stable
patterns is almost inevitable, regardless of how disorganized the
network is to begin with. Basically, the genetic interaction dynamics
seem to force the cellular genome to spontaneously organize itself
into a viable structure.

So there we have it: logical tangles and self-reference, chaotic motion,
static instability, uncomputability, irreducibility, emergence—six quite
different types of surprise generators, any one of which can and often
does lead to models of reality departing in noticeably important ways
from reality itself. Where this all seems to be leading is to the fact that
both natural and human affairs are just plain complex. If we accept
the provisional conclusion that it’s the complex systems of nature and
life that produce the surprises, we have little choice but to confront
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head-on the difference between the simple and the complex. But does
it make any sense at all to speak of a “science of complexity.”

“COMPLEXIFICATION”

A few years ago, I saw a cartoon showing two scientists arguing over
the meaning of complexity. In suitably dogmatic terms, the first
scientist asserted, “Complexity is what you don’t understand.” Re-
sponding to this temerarious claim, his colleague replied, “You don't
understand complexity.” This circular exchange mirrors perfectly to
my eye how the informal term complexity has been bandied about in
recent years—especially within -the normally flinty-eyed community
of system scientists—to characterize just about everything from anes-
thesiology to zymurgology. Here we want to explore just a few of the
dimensions of the problem of trying “scientify” the simply complex.

Science-fiction writer Poul Anderson once remarked, “I have yet to
see any problem, however complicated, which, when you looked at
it the right way, did not become still more complicated.” Substituting
the word complex for complicated, this statement serves admirably to
capture two of the key points needed to understand what's at issue
in turning the casual, everyday notion of a complex system into
something resembling a science.

First is the realization that complexity is an inherently subjective
concept; what's complex depends upon how you look. When we
speak of something being complex, what we're doing is making use
of everyday language to express a feeling or impression that we dignify
with the label complex. But the meaning of something depends not
only on the language in which it is expressed (i.e., the code), the
medium of transmission and the message, but also on the context. In
short, meaning is bound up with the whole process of communication
and doesn't reside in just one or another aspect of it. As a result, the
complexity of a political structure, a national economy or an immune
system cannot be regarded as simply a property of that system taken
in isolation. Rather, whatever complexity such systems have is a joint
property of the system and its interaction with another system, most
often an observer and/or controller.

This point is easy to see in areas like economics and finance. For
instance, an individual investor interacts with the stock exchange and
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thereby affects the price of a stock by deciding to buy or sell. This
investor then sees the market as complex or simple, depending on
how the prices are perceived to be changing. But the exchange itself
acts upon the investor too, in the sense that what is happening on the
floor of the exchange influences the investor’s decisions. This back
interaction causes the market to see the investor as having a certain
degree of complexity, in that the investor’s actions cause the market
to be described in terms like nervous, calm or unsettled. This kind of
two-way complexity becomes especially obvious in situations when
the investor is one whose trades make noticeable blips on the ticker
without actually dominating the market.

So just like truth, beauty, good and evil, complexity resides as r.nuch
in the eye of the beholder as it does in the structure and behavior of
a system itself. This is not to say that there do not exist objective ways
to characterize some aspects of a system’s complexity. After all, an
amoeba is just plain simpler than an elephant by whatever notion of
complexity you happen to believe in. The main point here is that these
objective measures only arise as special cases of the two-way meas-
ures, in which the interaction between the system and the observer is
much weaker in one direction than in the other.

The second key point brought out by Anderson’s quotation is that
common usage of the term complex is informal. The word is typic?lly
employed as a name for something that seems Count.erintu‘inve,
unpredictable or just plain hard to pin down. So if it’s a genuine science
of complex systems we're after and not just anecdotal accounts based
on vague personal opinions, we’re going to have to translate some of
these informal notions about the complex and the commonplace into
a more formal, stylized language, one in which intuition and meaning
can be more or less faithfully captured in symbols and syntax. The
problem is that an integral part of transforming comple).(ity (or
anything else) into a science involves making that which is fuzzy
precise, not the other way around, an exercise we might more
compactly express as “formalizing the informal.”

Just to bring home this point a bit more forcefully, let’s pause for a
moment to consider some of the properties associated with simple
systems by way of inching our way to a feeling for what's involved
with the complex. Generally speaking, simple systems exhibit the
following characteristics:
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* Predictable bebavior—There are no surprises in simple systems;
simple systems give rise to behaviors that are easy to deduce if we
know the inputs (decisions) acting upon the system and the environ-
ment. If we drop a stone, it falls; if we stretch a spring and let it g0,
it oscillates in a fixed pattern; if we put money into a fixed-interest
bank account, it grows to a predictable sum in accordance with an
easily understood and computable rule. Such predictable and intui-
tively well-understood behavior is one of the principal characteristics
of simple systems. '

Complex processes, on the other hand, generate counterintuitive,
seemingly acausal behavior that’s full of surprises. Lower taxes and
interest rates lead to higher unemployment; low-cost housing projects
give rise to slums worse than those the “better” housing replaced; the
construction of new freeways results in unprecedented traffic jams
and increased commuting times. For many people, such unpre-
dictable, seemingly capricious, behavior is the defining feature of a
complex system., :

* Few interactions and feedback/feedforward loops—Simple sys-
tems generally involve a small number of components, with self-
interactions dominating the linkages among the variables. For example,
primitive barter economies, in which only a small number of goods
(food, tools, weapons, clothing) are traded, seem much simpler and
easier to understand than the developed economies of industrialized
nations, in which the pathway between raw material inputs and
finished consumer goods follows a labyrinthine route involving large
numbers of interactions between various intermediate products, labor
and capital inputs.

In addition to having only a few variables, simple systems generally
consist of very few feedback/feedforward loops. Loops of this sort
enable the system to restructure, or at least modify, the interaction
pattern among its variables, thereby opening up the possibility for a
wider range of behaviors. To illustrate, consider a large organization
that’s characterized by variables like employment stability, substitution
of capital for human labor, and level of individual action and
responsibility (individuality). Increased substitution of work by capital
decreases the individuality in the organization, which in turn may
reduce employment stability. Such a feedback loop exacerbates any
internal stresses initially present in the system, leading possibly to a
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collapse of the entire organization. This type of collapsing loop is
especially dangerous for social structures, as it threatens their ability
to absorb shocks, which seems to be a common feature of complex
social phenomena.

o Centralized decision-making—In simple systems, power is gen-
erally concentrated in one or at most a few decision-makers. Political
dictatorships, privately owned corporations and the Roman Catholic
Church are good examples of this sort of system. These systems are
simple because there is very little interaction, if any, between the lines
of command. Moreover, the effect of the central authority’s decision
upon the system is usually rather easy to trace.

By way of contrast, complex systems exhibit a diffusion of real
authority. Generally, such systems seem to have a nominal supreme
decision-maker, but in actuality the power is spread over a decentral-
ized structure. Actions of a number of units then combine to generate
the actual system behavior. Typical examples of these kinds of systems
include democratic governments, labor unions and universities. Such
systems tend to be somewhat more resilient and stable than centralized
structures because they are more forgiving of mistakes by any one
decision-maker and are more able to absorb unexpected environ-
mental fluctuations.

« Decomposable—Typically, a simple system involves weak inter-
actions among its various components. So if we sever some of these
connections, the system behaves more or less as before. Relocating
American Indians to reservations produced no major effects on the
dominant social structure in New Mexico and Arizona, for example,
since, for various cultural reasons, the Indians were only weakly coupled
to the dominant local social fabric in the first place. Thus the simple
social interaction pattern present could be further decomposed and
studied as two independent processes—the Indians and the settlers.

Complex processes, on the other hand, are irreducible. Neglecting
any part of the process or severing any of the connections linking its
parts usually destroys essential aspects of the system’s behavior or
structure. We have already looked at the N-Body Problem in this
regard. Other examples include an electrical circuit, a Renoir painting
or the tripartite division of the U.S. government into its executive,
judicial and legislative subsystems. You just can’t start slicing up
systems of this type into subsystems without suffering an irretrievable
loss of the very information that makes these systems a “system.”

* Kk *
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The foregoing points are pretty obvious, I think, and should hardly
be matters of debate among the complex systems crowd. Nevertheless,
i’s from looking at the commonplace and the self-evident in new and
interesting ways that new sciences emerge. Bridging the gap between
the informal and the formal is a necessary first step in making
something that passes for a science out of our intuitive, everyday
feelings about the complex. But before entering into a discussion of
just how this subjectivistic formalization might be carried out, let me
pause for a moment to consider why we might want such a thing as
a science of complexity in the first place.

As noted above, our impressions of complexity are something like
an experience of meaning, part of a cultural cognitive map. And the
meaning of our lives depends on the particular maps we use to decode
our thoughts, choices and actions. But human societies have evolved
to the point where the traditional maps no longer match our collective
experience for very long. Thus, by coming up with a workable Gi.e.,
scientific) theory of complexity, we can hope to be able to internally
represent the experience of change by describing our collective reality
as a process. This, in turn, would be a major step toward the
development of a framework within which we can begin to under-
stand how to control and manage what our maps tell us are complex
processes.

A second, and somewhat more direct, reason for trying to create a
science of the complex is to get a handle on the limits of reductionism
as a universal problem-solving approach. When faced with a problem
we don’t understand, the traditional knee-jerk response is to invoke
the old adage “When you don’t know what to do, apply what you do
know.” Most of the time this translates into an attempt to decompose
the hard problem into a collection of simpler subproblems that we
understand. We then try to assemble the solutions of these bits and
pieces into something that looks like an answer to the original
question. Unfortunately, this procedure works just often enough to
appeal to the prejudice of reductionists seeking rationalization for their
particular brand of epistemological medicine.

But we’re all familiar with examples like the behavior of gravitating
bodies or, for that matter, the human body, in which any reductionistic
approach of this sort irretrievably destroys the very nature of the
problem. Such systems are complex. And it would be nice to have a
theory tracing out the boundaries of the reductionistic approach, as
opposed to blundering about like blind men, crashing up against these
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barriers before we even know they exist. So much for motivation.
Now let’s turn to the twin problems of formalization and objectification
of the informal and subjective.

THE SCIENCE OF SURPRISE

The heart of the formalization process is shown schematically in
Figure 7.1, which we might term the modeling relation. Here we see
a natural (read: real-world) system N characterized by observations
and relations stated in everyday language. The formalization process
then involves encoding these characterizations of N into the symbols
and strings of a formal logical (read: mathematical) system F. The key
to understanding this process of formalization is to recognize that all
notions of meaning (i.e., semantics) reside on the left-hand side of the
diagram. So any real-world intuitions we have about N—its complex-
ity, for example—belong to this side of the modeling relation. By way
of contrast, there is no meaning at all on the right-hand side; F consists
of mere abstract symbols, together with rules (a grammar) for how
strings of these symbols can be combined to form new strings.
Whatever meaning might inhere in these strings is then brought out
by the decoding of the strings back into N. An example or two will
fix this idea.

In Chapter Four we saw that during a course in mathematical logic
at Cambridge University in 1935, Alan Turing was exposed to Hilbert’s
Decision Problem, which asks if there is any algorithmic procedure
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for deciding whether a given statement made in a formal logical system
is a theorem of that system. While trying to solve this problem, Turing
invented the so-called Turing machine discussed earlier in our delib-
erations on computability. For our purposes here, what's important
about this mathematical computer is that it represents the first suc-
cessful attempt to formalize the informal notion of what it means to
carry out a computation. Despite the fact that people had been
calculating for several thousand years, it was not until Turing’s work,
less than sixty years ago, that the bridge was crossed from the informal
system N = computation to its formalization as F = Turing machine.

While Turing’s result showing that all computers are created equal
is of enormous conceptual significance, I think it’s important to point
out that very few computer designers, if any, rely upon this fact as
they go about their daily chores. So the formalization of the informal
idea of a computation has had very little practical impact on problems
of modern computer design and operation, despite the fact that the
Turing machine serves as the conceptual foundation for a large part
of what we now call computer science. In passing, let me mention
another example of the same sort, namely, Gédel’s formalization of
the informal notion of truth. Again, not many mathematicians lose any
sleep over the implications of Gédel’s result for their work. Neverthe-
less, it’s hard to deny the significance of incompleteness as we ponder
the soundness of the. mathematical enterprise. So it shouldn’t come as
much of a surprise were we to discover that a successful formalization
of complexity will be equally useless from a practical point of view,
yet equally profound from the standpoint of setting the foundations
for a general theory of models.

Arguing by analogy from the historical genesis of these examples,
we find that the formalization of the idea of complexity reduces to
finding a symbolic structure in F to mirror our informal ideas about
what it is that makes a system complex. In Turing’s case, everyday
ideas about what it means to carry out a computation were mirrored
in the operations of the Turing machine, while Gédel mirrored what
we think of as real-world truth by the idea of a mathematical proof.
Almost all attempts made to carry out this kind of mirroring for
complexity—information content, length of minimal computer pro-
grams, entropy, thermodynamic depth, to name but a few—come
down to the translation of informally felt beliefs about the complex
into formal, symbolic operations of one sort or another. But so far
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none of these formal surrogates has achieved a consensus in the
system modeling community as being the “right” formalization. And
despite the numerous interesting and technically deep results that have
come out of these attempts, I can’t think of a single system modeler
whose work is influenced in the slightest by any of these charac-
terizations (which, again arguing by analogy with Turing and Goédel,
could be taken as an indicator that they are on the right track after all,
I suppose). This sad fact indicates that there’s something missing from
these formalizations. Recalling the discussion given earlier, let me now
argue that the missing ingredient is the explicit recognition that system
complexity is a subjective, not an objective, property of an isolated
system. But it can become objective, once our formalism takes into
account the system with which our target system interacts.

Descriptions, Bifurcations and Complexity
Consider a system N and an observer who interacts with N. (Note:
Here I'll use the emotionally laden term observer in the weakest
possible sense to mean simply some other system that interacts in
some way with the target system N, and not in the stronger sense of
a system that measures or sees an attribute of N.) The observer creates
a linguistic description of the system in the real world. This description
is then formalized into a description in the mathematical world F by
the process just discussed. We now ask, How many inequivalent
descriptions of N can our observer generate? My claim is that the
complexity of the system N as seen by the observer is directly
proportional to the number of such descriptions. Here’s why.
Suppose our system N is a stone on the street. To most of us, this
is a pretty simple, almost primitive kind of system because we are
capable of interacting with the stone in a very circumscribed number
of ways. We can break it, throw it, kick it—and that’s about it. Each
of these modes of interaction represents a different (i.e., inequivalent)
way to interact with the stone. But if we were geologists, then the
number of different kinds of interactions available to us would greatly
increase. In that case, we could perform various sorts of chemical
analyses on the stone, use carbon-dating techniques on it, x-ray it and
so on. For the geologist, the stone becomes a much more complex
object as a result of these additional—and inequivalent—modes of
interaction. We see from this example that the complexity of the stone
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is a relative matter, dependent on the nature of the system with which
the stone is interacting. And this idea is perfectly general, applying
not just to stones on the street but to all systems. So how do we get
a handle on the number of such inequivalent descriptions available
to a particular observer?

Recall that the observer begins by creating an informal description
of a system N in the real world. The observer must then encode this
description into the symbols and strings of a formal logical structure F.
Deciding whether or not two informal, real-world linguistic descrip-
tions are equivalent is a pretty tricky affair, opening up all sorts of
depressing debates and semantic confusions of the kind that permeate
the arts and humanities. But not so in the pristine world of formal
logical systems. Every formal mathematical structure in F comes
equipped with its own natural notion of equivalence, a notion that
can be used to classify the informal descriptions.

The idea underlying virtually all of these equivalence concepts is
that two objects are taken to be equivalent if they can be transformed
one to the other by a simple relabeling of the variables used to describe
them in F. In short, two objects are equivalent if they differ only in
the way we look at them (i.e., by a change of coordinates). So once
we have coded our informal description of N into some formal
mathematical structure like a set of differential equations, a directed
graph, a collection of simplicial complexes or whatever, the natural
equivalence relations for that type of structure can be employed to
characterize the level of complexity of the system N. In essence, the
complexity level is directly related to the number of equivalence
classes that the observer creates by means of the natural equivalence
relations defined for the coded version of Nin F.

The foregoing idea also provides us with a way to identify when
the complexity level shifts as we move through the space of descrip-
tions. Additional complexity appears whenever one description bifur-
cates from another. So it's the bifurcation points in F that we can
identify with increased complexity and, even more generally, with
emergent phenomena. This observation enables us to relate the
complexity of a system to things as seemingly diverse as the elemen-
tary catastrophes or the bifurcation points of vector fields.

The foregoing arguments lead inexorably to the claim that for
complexity to become a science it's necessary—but far from suffi-
cient—to formalize our intuitive notions about complexity in symbols
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and syntax. Furthermore, it’s necessary for any such formalization to
respect the fact that complexity is a subjective concept. One way to
do this is to focus attention on the fact that no system lives in isolation.
There are always other systems like observers or controllers that are
responsible for deciding upon the particular formalization to be used.
And, in fact, it is actually these systems that ultimately render the
verdict as to what is and isn’t complex.

So we come to the perhaps not so surprising conclusion that the
creation of a science of complex systems is really a subtask of the
more general, and much more ambitious, program of creating a theory
of models. Complexity—as a science—is merely one of the many
rungs on this endless ladder. As a call to arms in this battle with the
complex, I can hardly do better than to close our deliberations on the
sources and science of surprise with the following admonition from
Marguerite Yourcenar, who in 1980 became the first woman writer
elected to membership in the Académie Francaise. In her novel
Memoirs of Hadrian, Yourcenar writes:

The rules of the game: learn everything, read everything, inquire
into everything. . . . When two texts, or two assertions, or perhaps
two ideas, are in contradiction, be ready to reconcile them rather
than cancel one by the other; regard them as two different facets,
or two successive stages, of the same reality, a reality convincingly
human just because it is complex.
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CHAPTER ONE
In the Beginning Is the Wor(l)d

Foi‘ a brief account of Teigen’s experiment with proverbs, see the entertaining
volume '

Kohn, A. You Know What They Say. . .. New York: Harper Perennial, 1990.

For the details, the original research article should be consulted. It's
found in

Teigen, K. “Old Truths or Fresh Insights?” British Journal of Social
Psychology 25 (1986), 43—49. / 4

Edward Tenner’s insightful remarks about the “revenge effect” can be
found in

Tenner, E. “The Real World Takes Revenge on Planners.” Intemational
Herald Tribune, july 31, 1991, 5.

For an account of the sandpile puzzle, see

Watson, A. “The Perplexing Puzzle Posed by a Pile of Apples.” New
Scientist, December 14, 1991, 19.

This ar}ic}e also points out that Liffman’s computer model only slices the real
sandpile into a two-dimensional planar section, and that extending it to three
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dimensions may well provide the missing link to explain the central dip in
pressure.

Wittgenstein’s work has been recounted in many places. One of the best is
the prize-winning biography
Monk, R. The Duty of Genius. London: Jonathan Cape, 1990.

The relationship between a real-world phenomenon and its mathematical
representation is explored in painstaking detail in the two-volume text

Casti, J. Reality Rules: Picturing the World in Mathematics. I—The Funda-
mentals, Il—The Frontier. New York: Wiley, 1992.
Rules of Reality

A layman’s account of how science stands today vis-a-vis the problems of
prediction and explanation of everyday events is given in

Casti, J. Searching for Certainty: What Scientists Can Know About the
Future. New York: Morrow, 1991 (papetback edition: Quill, New York, 1992).

A detailed critique of the idea that economics is in any way scientific is given
in the volume

Rosenberg, A. Economics—Mathematical Politics or Science of Diminish-
ing Returns? Chicago: University of Chicago Press, 1992.

Patterns, Puzzles and Paradoxes

For a fascinating discussion of paradoxes of all sorts, including the Penrose
impossible staircase, Escher engravings and much, much more, see

Faletta, N. The Paradoxicon. New York: Doubleday, 1983.
In this same connection, see the book

Hughes, P., and G. Brecht. Vicious Circles and Infinity. London: Penguin,
1975.

The history and resolution of the Alabama Paradox is treated in considerable
detail in the volume

Brams, S. Paradoxes in Politics. New York: The Free Press, 1976.

The counterintuitive network of springs, strings and weights was first
presented in

Cohen, J., and P. Horowitz. “Paradoxical Behavior of Mechanical and
Electrical Networks.” Nature 352 (August 22, 1991), 699-701.

For a follow-up describing the Kansas City hotel incident, see
Podell, H. “Real-life Failure.” Nature 355 (February 20, 1992), 683.

The psychological experiments by Hermstein and Mazur involving inconsis-
tency and irrationality in economic decisions are described in the popular
article

Herrnstein, R., and J. Mazur. “Making Up Our Minds.” The Sciences 27,
no. 6 (1987), 4047.
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A famous article in which many of the same issues are raised is

Tversky, A., and D. Kahneman. “The Framing of Decisions and the
Psychology of Choice.” Science 30 (January 1981), 453—458.

It’s All in the Motion

For the more technically inclined, a reasonably accessible account of
dynamical systems, vector fields, attractors and all the rest is available in
Chapter Two of the first Casti volume cited above. For more advanced
technical treatments, see

Irwin, M. Smooth Dynamical Systems. New York: Academic Press, 1980.

Guckenheimer, J. and P. Holmes. Nonlinear Oscillaﬁons, Dynamical
Systems, and Bifurcations of Vector Fields. New York: Springer, 1983.

Lichtenberg, A. and M. Lieberman. Regular and Stochastic Motion. New
York: Springer, 1983.

Jackson, E. Atlee. Perspectives of Nonlinear Dynamics. Vols. 1 & 2.
Cambridge: Cambridge University Press, 1990.

Chaos has had such public visibility that it's now in danger of becoming
positively fashionable. For an introductory account, see the chaos “bibles”

Gleick, J. Chaos. New York: Viking, 1987. i
Stewart, 1. Does God Play Dice? Oxford: Basil Blackwell, 1989.

The work by Cesaré Marchetti showing the ubiquity of the logistic law is
discussed with many details in

Marchetti, C. “Stable Rules in Social Behavior.” IBM Conference, Brazilian
Academy of Sciences, Brasilia, 1986.

For a popular account of this circle of ideas, see the recent work
Modis, T. Predictions. New York: Simon & Schuster, 1992.

For a much more thorough account of how positive feedback pervades
economic processes, see

Arthur, B. “Positive Feedbacks in the Economy.” Scientific American,
February 1990, 94-99.

Helpman, E. and P. Krugman. Market Structure and Foreign Trade.
Cambridge, Mass.: MIT Press, 1985.

Arthur, B. “Competing Technologies, Increasing Returns, and Lock-In by
Historical Events.” The Economic Journal 99 (1989), 116-131,

CHAPTER TWO

Continuity and Common Sense

For recent ammunition supporting the growing belief that the Chicxulub
impact crater is the “smoking gun” responsible for the demise of the
dinosaurs, see the article
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“Huge Impact Tied to Mass Extinction.” Science 257 (August 14, 1992),
878-879.

An excellent popular exposition of the meteorite-impact theory of the death
of the dinosaurs, along with an enormously insightful account of the ways
of science, is found in the volume

Raup, D. The Nemesis Affair. New York: Norton, 1986.

Ascertaining the exact nature of the relationship between a real-world
phenomenon and a mathematical model of that phenomenon is probably
the most fundamental epistemological problem in theoretical science. In fact,
this same question shows up in many guises elsewhere, as well. The relationship
between a painting of, say, a bowiful of fruit and the actual object, or the
relationship between the word for water and the wet stuff itself are two
simple examples. Philosophers, linguists, art critics and semioticians, among
others, have debated the nature of this symbolic representation for centuries.
So it should be no surprise to find a division of opinions on the matter even
within the confines of the narrow world of science. Here are four somewhat
eclectic but representative samples from the literature on this point:

Barbour, 1. Myths, Models, and Paradigms. New York: Harper & Row,
1974.

Campbell, N. What Is Science? London: Methuen, 1921 (Dover reprint
edition, New York, 1953).

Hempel, C. Philosopby of Natural Science. Englewood Cliffs, N.J.: Pren-
tice-Hall, 1966.

Salmon, W. Scientific Explanation and the Causal Structure of the World.
Princeton: Princeton University Press, 1984.

Although not directed toward the theme of scientific models and their
connection with reality, a volume not to be missed as an account of the
general symbol-versus-symbolized issue is the following account by Michel
Foucault of the work of the Belgian painter René Magritte:

Foucault, M. This Is Not a Pipe. Berkeley, Calif.: University of California
Press, 1983.
On matters of prediction and explanation—scientific style—via the medium
of a set of rules, an introductory account for the general reader is

Casti, ]. Searching for Certainty: What Scientists Can Know About the
Future. New York: Morrow, 1991 (paperback edition: Quill, New York, 1992).

The Fall of the Wall and the Collapse of a Beam

Zeeman’s model for the discontinuous change of a political ideology was
published in

Zeeman, E. C. “A Geometrical Mode! of Ideologies,” in Transformations:
Mathematical Approaches to Cultural Change, C. Renfrew and K. L. Cooke,
eds. New York: Academic Press, 1979, 463—479.
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For the technically inclined, the family of functions so central to the
catastrophe theory framework often arises in a somewhat different fashion
than the route described in the text. Suppose we begin with a single function
S, x5, . .. x,) of n variables. If the Hessian matrix of this function has rank
less than # at the origin, then the origin is a degenerate critical point of f.
This means that the second derivative of f does not completely characterize
the local behavior of the function near the critical point at the origin. In short,
the function fis unstable in the space of smooth functions, in exactly the
sense described in the text. For example, the function f{x) = ° can be
perturbed to a function with none or two critical points near the origin by
means of an arbitrarily small change (e.g., ° = x° + ax, a >0 gives no critical
points, while a < 0 gives two). What we want to do is find the simplest family
of functions that contains fand is stable as a family.

To find this simplest family, we have to make use of a lot of very
high-powered techniques and arguments from differential topology, singu-
larity theory and other branches of mathematics. When all the smoke clears
away, what we're left with is a parameterized family of the sort discussed in
the text. For a fairly complete account of how to find the stable family for a
given f, see Chapter Two of

Casti, J. Reality Rules: Picturing the World in Mathematics. —The Funda-
mentals. New York: Wiley, 1992.

Two other fairly accessible, thbugh still mathematical accounts of the ideas
and machinery of catastrophe theory are

Poston, T., and 1. Stewart. Catastropbe Theory and Its Applications.
London: Pitman, 1978.

Saunders, P. An Introduction to Catastropbe Theory. Cambridge: Cam-
bridge University Press, 1980.

The beam-buckling example is treated in great detail in the two books above.
The original account, however, is -

Zeeman, E. C. “Euler Buckling,” in Structural Stability, the Theory of
Catastrophes and Applications in the Sciences. Lecture Notes in Mathematics,
Vol. 525. New York: Springer, 1976, 373-395.

The Magnificent Seven

For an introduction to Whitney’s famous result involving mappings of the
plane to the plane, see the Casti book cited in the preceding section. For a
detailed account of the mathematics of this result, and for much additional
information about catastrophe theory, see

Lu, Y.-C. Singularity Theory and an Introduction to Catastrophe Theory.
New York: Springer, 1976.

A complete proof of the Classification Theorem, together with a wealth of
good, bad and infamous applications of the theory, is available in the volume

Zeeman, E. C. Catastropbe Theory: Selected Papers, 1972-1977. Reading,
Mass.: Addison-Wesley, 1977.
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Physics and Metapbysics

Thom’s interest in the work of Waddington leading up to the mathematics
of catastrophe theory is recounted by Thom himself in the volume

Thom, R. Mathematical Models of Morphogenesis. Chichester, England:
Ellis Horwood, 1983.

This volume is also a primary source for Thom’s “metaphysical” way of
applying catastrophe theory in biology and linguistics. The source that got
everything started, however, was Thom’s famous book on the topic, the
French original of which appeared in 1972. The precise reference for the
English translation is

Thom, R. Structural Stability and Morphogenesis. Reading, Mass.: Addison-
Wesley, 1975.

An earlier paper by Thom that set the stage for much of the later biological
speculations is

Thom, R. “Topological Models in Biology.” Topology 8 (1969), 313-335.

Berry and Nye’s striking applications of catastrophe theory to the problem
of triple junctions for caustics are reported in

Berry, M., and J. Nye. “Fine Structure in Caustic Junctions.” Nature 267
1977, 34-36.

The famous work by D’Arcy Thompson in which he almost single-handedly
created the field of relational biology is

Thompson, D’Arcy. On Growth and Form. Cambridge: Cambridge Univer-
sity Press, 1917,

For an up-to-date account of morphogenesis for the general reader, including
a discussion of Turing's reaction-diffusion model for pattern formation, see
Chapter Three of

Casti, J. Searching for Certainty: What Scientists Can Know About the
Future. New York: Morrow, 1991 (paperback edition: Quill, New York, 1992).

The model of collapse of ancient civilizations is adapted from the original,
which was presented in

Renfrew, C. “Systems Collapse as Social Transformation: Catastrophe and
Anastrophe in Early State Societies,” in Transformations: Mathematical
Approaches to Cultural Change, C. Renfrew and K. L. Cooke, eds. New York:
Academic Press, 1979, 481-506.

For an enlightening critique of Renfrew’s model, along with an alternate
approach to the problem of system collapse based on more traditional
dynamical systems lines, see the fascinating work

Lowe, J. The Dynamics of Collapse: A Systems Simulation of the Classic
Maya Collapse. Albuquerque: University of New Mexico Press, 1985.

A volume that takes up the entire question of social collapse in ancient
societies from several complementary points of view is
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The Collapse of Ancient States and Societies, N. Yoffee and G. Cowgill, eds.
Tucson: University of Arizona Press, 1988.

For a more extended discussion of the physical versus metaphysical ways of
catastrophe theory, the reader is invited to consult Chapter Two of

Casti, J. Reality Rules: Picturing the World in Matbematics. I—The Funda-
mentals. New York: Wiley, 1992,

Tbe Theater of the Absurd

The main difference between controversies in science and those in the arts
is that the scientific variety revolve by and large about conflicting interpre-
tations of observations and theories rather than focusing on personalities and
professional positions. A good account of some scientific controversies
underscoring this point is given in the volume

Scientific Controversies. H. T. Englehardt, Jr. and A. Caplan, eds. Cam-
bridge: Cambridge University Press, 1987.

For a very illuminating discussion of catastrophe theory in general, including
probably the best account available of the controversy for the layman, see

Woodcock, A., and M. Davis. Catastropbe Theory. New York: E. P. Dutton,
1978. ‘

The article by Gina Kolata that really brought the controversy to a head was
published as

Kolata, G. “Catastrophe Theory: The Emperor Has No Clothes.” Science
(April 15, 1977). See also the correspondence in the issues of June 17 and
August 26, 1977.

The “devastating” critique by Sussman and Zahler was published as

Zahler, R. and H. Sussman. “Claims and Accomplishments of Applied
Catastrophe Theory.” Nature, October 27, 1977. See also correspondence in
the issues of December 1 and December 29, 1977.

CHAPTER THREE

Expecting the Unexpected

The issue of determinism versus predictability has been a staple of philoso-
phers of science for generations. Discussions from various points of view can
be found in the book of readings

Philosophy of Science. E. Klemke, R. Hollinger and A. D. Kline, eds. Rev.
ed. Buffalo, N.Y.: Prometheus Books, 1988.

Of particular interest in the above volume is the article by Paul Thagard on
why astrology is a pseudoscience. Other works worth consulting include

Kemeny, J. A Philosopber Looks at Science. Princeton: Van Nostrand,
1959.

Suppes, P. Probabilistic Metapbysics. Oxford: Basil Blackwell, 1984.
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of unpredictability, in that having even an infinite 'numbe? qf measurements
of where the system was in the past is of no help in predicting where it will
be found next.
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K-flows are widespread among systems in which collisions b;tween
particles dominate the dynamics. Simple examples of such processes mclgde
the case of three or more billiard balls in a box and the so-called classical
gas, in which we regard each gas molecule as a hard litile sphgre. Although
it has yet to be proved mathematically, the K-flow property is thought to
characterize the vast majority of natural processes. .

In order to test a set of data for the K-flow property, cqn51der two
trajectories starting from points extremely close together. Now introduce a

quantity K, the so-called K-entropy, to measure the average rate at which the -

trajectories are moving apart from each other. Thu§, K is the rate at vyhu:h
the trajectories are becoming distinguishable. It's ev1<.ient that 1f the trajecto-
ries do not diverge at all, then K = 0, while chaotic dynamics leads to a
positive, but finite, value for K. A totally random path, on the other hand,

has K= + .

Bulls, Bears and Beer

A layman’s account of prediction and explanation as it pertains to the
fluctuation of prices on stock exchanges is given in Chapter Four of

Casti, J. Searching for Certainty. New York: Morrow, 1991 (paperback
edition: Quill, New York, 1992).
For more detailed accounts of how chaos intrudes into the pricing mecha-
nism, see the recent accounts in

Peters, E. Chaos and Order in the Capital Markets. New York: Wiley, 1991.

Brock, W., B. LeBaron and D. Hsieh. Nonlinear Dynamics, Chaos and
Instability. Cambridge, Mass.: MIT Press, 1991.
The workings of the Beer Game are described with great enthusiasm and
detail in
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Mosekilde, E., E. Larsen and J. Sterman. “Coping with Complexity:
Deterministic Chaos in Human Decisionmaking Behavior,” in Beyond Belief
Randomness, Prediction and Explanation in Science, J. Casti and A. Karlgvist,
eds. Boca Raton, Fla.: CRC Press, 1991, 199~229.

Computing the Cosmos

Along with chaos came the breakdown of the perfect Laplacian correlation
between predictability and determinism—even in principle. We’ve seen that
a key feature of chaotic processes is the way that errors in assessing the initial
state of a system grow exponentially over the course of time. Metaphorically
speaking, the famed Argentine poet and writer Jorgé Luis Borges put it best
in his short story “The Library of Babel.” In th~t haunting tale there are an
infinite number of hexagonally shaped cells in Borges's Library, these cells
being arranged vertically one atop another in an infinitely long chain. This
phantasmagorical Library contains every possible book that could be
written, as well as leagues of strange volumes filled with random jumbles of
letters and meaningless phrases. Chaotic systems correspond to those
librarians of Babel who read every word and character in the books under
their care. In contrast, nonchaotic systems are like readers who merely look
at the titles and skim the contents. The sensitivity of chaotic systems to their
initial conditions and, hence, their unpredictability comes from the fact that
slight changes in the initial state correspond to different books in Borges's
Library, which tell different tales. “The Library of Babel” can be found in the
collection

Borges, J. Labyrintbs. New York: New Directions, 1964.

In a footnote to this story, Borges speculates on a different kind of book
having infinitely thin pages, densely packed like the rational numbers. With
this book, each time you think you've turned a page it turns out that on closer
inspection the page is itself a collection of thinner pages. This idea raises the
question of a book with a continuum of pages. This theme is explored in
the science-fiction novel White Light by author, logician and computer
scientist Rudy Rucker.

CHAPTER FOUR
The Power of Paradox

A first-rate account of paradoxes of all sorts—logical, visual and otherwise—is
given in the little volume

Faletta, N. The Paradoxicon. New York: Doubleday, 1983.
Another excellent introduction to these matters is
Poundstone, W. Labyrintbs of Reason. New York: Doubleday, 1988.
A much more detailed discussion of legal paradoxes can be found in
Suber, P. The Paradox of Self-Amendment. New York: Peter Lang, 1990.
In this same regard, see Chapter Four in
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Hofstadter, D. Metamagical Themas. New York: Basic Books, 1985,

which deals with Nomic, a game whose major activity focuses on how to
change its rules lawfully.

A good introduction to Julesz figures is found in the volume

The Virtual Reality Playbouse. Corte Madera, Calif.: The Waite Group Press,
1992.
If you want to create your own Julesz figures, the N.E. Thing Corporation
offers a low-cost computer package for IBM PCs that allows you to transform
just about any planar figure into what they call a “Stare-EO.” For more details,
contact N.E. Thing Enterprises, Box 1827, Cambridge, MA 02139. It should
be noted that psychologists have discovered that a small fraction of people
(less than 10 percent) are neurologically wired in such a way that they cannot
see the three-dimensional structure present in these figures. Too bad! So if
you didn't “get” the message of Figure 4.3 despite hours of staring, it’s possible
that you may fall into this unlucky group.

Reality Rules
The logical conundrums involving George, Martha, Waldo and Myrtle were
first presented in the vastly entertaining and educational work

Paulos, John A. I Think, Therefore I Laugh. New York: Columbia University
Press, 1985.
An introductory account of formal systems can be found in

Levine, H. and H. Rheingold. The Cognitive Connection. New York:
Prentice-Hall, 1987.
For a more technical account, emphasizing the connections between formal
systems and languages, see the book

Moll, R., M. Arbib, and A. Kfoury. An Introduction to Formal Language
Theory. New York: Springer, 1988.

For a vast amount of information about formal systems, decision procedures,
Godel’s Theorems and much, much more besides, see the award-winning
tome

Hofstadter, D. Gédel, Escher, Bach: An Eternal Golden Braid. New York:
Basic Books, 1979.
For a proof of the decision procedure given in the text for the %- ¥-2x-system,
see the article

Swanson, L. and R. McEliece. “A Simple Decision Procedure for Hof-
stadter's MIU-System.” Mathematical Intelligencer 10, no. 2 (1988), 48-49.
Magic Machines and Busy Beavers

An excellent introductory account of the circle of problems surrounding
computation, formal systems, Turing machines and the Halting Problem, as
well as much more, is available in the article
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Davis, M. “What Is a Computation?” in Mathematics Today- Ti
? - Twelve
Informal Essays, L. A. Steen, ed. New York: Springer, 1978, 241—2%}7.

For a general-readership development of the idea and workings of a Turing
machine, see

Hoffman, P. Archimedes’ Revenge. New York: Norton, 1988.
Rucker, R. Mind Tools. Boston: Houghton-Mifflin, 1987.

A more tgc;hnical account of Turing machines and their connections with not
only decision problems but also languages is available in the text

Davis, M. and E. Weyuker. Computability, Complexity,
Orlando: Academic Press, 1983. ? » plely, and Language.

A very stimulating collection of essays reviewing current knowledge about

Tunng machipes and their many implications and ramifications in other areas
is presented in

The Universal Turing Machine. R. Herken, ed. O : iversi
Preve. , ed. Oxford: Oxford University

The problem of computability lies at the heart of the theory of i
computation.
Excellent accounts of these matters are available in the vgumes putation

Harel, D. Algoritbmics. Reading, Mass.: Addison-Wesley, 1987.

Davis, M. Computability and Unsolvability. New York: McGraw-Hill, 1958
(expanded reprint edition: Dover, New York, 1982). ,

Boolos, G. and R. Jeffrey. Computability and Logic. 3rd ed idge:
Cambridge University Press, 1989. ¥ gic: 3rd ed. Cambridge

Epstein, R. and W. Camielli. Computability: Computable Functi /
, W, . ) ons, Logic

and the Foundations of Matbhematics. Pacific Grove, Calif - :

Brooks/Cole, 1989. rove: Galll: Wadsworth &

Turing’s original article, in which he introduced the idea of a Turi i
. licle, ng machi
as a vehicle by which to discuss computability of numbers, is § machine

Turing, A. “On Computable Numbers with an Applicati

. 0 ! pplication to the Ent-
scheidungsproblem.” Proceedings of the London Mathematical Society, sgr.
2, vol. 42 (1936-37), 230-265; correction, vol. 43 (1937), 544-546.

The Busy Beaver Game was dreamed u i i

e Busy | p by Tibor Rado of Ohio State
University in the early 1?603. Compact introductory discussions of what's
curreptly known about this problem and about properties of the Busy Beaver
function BB(n) can be found in the article “Busy Beavers” in

Dewdney, A. The Armchair Universe. New York: Freeman, 1988.

Brady, A. “The Busy Beaver Game and the Meaning of Life,” in The

Universal Turing Machine, R. Herken, ed. Oxford: O iversi
b, e , rd: Oxford University Press,

In 1973 Bruno Weimann discovered that the 4-state Bu i
- sy Beaver can write
thirteen 1s on the tape before halting. Thus, BB(4) = 13. So far no one knows
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the value BB(5), although in 1984 George Uhing §howed that BB(5) 2 1,915.
The program establishing this remarkable result is

Symbol Read
State 0 1
A 1,RB 1,LC
B 0,L A 0,LD
C 1,LA 1, L, STOP
D 1,L,B 1R E
E 0,RD O,R B

A relatively technical update of the current state of play of the Busy Beaver
is given in the article i
i “ ior of Simple Machines,
hlin, R. and Q. Stout. “The Complex Behavnor o

in E'Anigrgent Computation. S. Forrest, ed. Cambridge, Mass.: MIT Press, 1991,
85-98. N

The Turing Machine Game is discussed in somewhat more detail in the survey
article

Jones, J. “Recursive Undecidability: An Exposition.” American Mathemati-
cal Montbly, September 1974, 724-738.

i ised proof of the uncomputability of the winning strategy
gerrlslz:;eﬂr.l ;};‘r:txgu(nse) bg the maximum number of steps that an n-state Turmgl
machine can perform before halting. We must have BB(n) lessktlflaln ([)tr1 eiqtgz;‘
to S(n) since the Busy Beaver function measures the number }?‘ sd a ; n
be printed, and it may be the case that on some steps the machine oe;Yl N
print a 1. By a strategy for Player B we mean a formula m = f{ n{), sglec Ag
what number to select as a function of the‘numl')er.n chosen fy Pz;yer N
By the rules of the Turing Machine Game, f is a winning strategy for ;Zg
o e e o) 6 b bt function 50n) ael. However, ks

B is just to take f(n) to e . Ho 8
iﬁrl-er]:z;,lel;' the !:ase that f{n) is less than the Busy Beaver liu?dc:%n va(:),
which in turn is less than or equal to S(n). And this hol bleor‘ _ rl;y
computable function f. Consequently, Player B has no computable winning
s i i ing the unsolv-

1t has constructed the following slick ppof showing the
abill?tr; ?)tfe Xz Hglting Problem. Suppose sucl} a Halting Algontbm exists, and
let d be the input data. Consider the following UTM program:

1. Check to see if d is the code for a UTM program P. If not, go

back to the start and repeat. . '
2. If d is the code for a program P, double the input string to get

d-d
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3. Use the assumed Halting Algorithm for the UTM with input data

d - d. 1f it stops, go back to the beginning of this step and repeat.
4. Otherwise, halt.

Call the above program H. Now since H is a program, it has its own code
b. Thus we can ask “Does H halt for input b?” It surely gets past step 1, since
by definition 5 is the code for the program H. And H gets past step 3, as
well, if and only if the UTM doesn’t halt with input b - b. Thus we conclude
that H halts with input data 4 if and only if the UTM does not halt with input
data b - b. But the UTM simulates a program P by starting with the input
data P- d and then behaving just like P operating on input data d. Therefore
we see that P halts with input data d if and only if the UTM halts with input
data P-d. So if we put P= Hand d= b, then we find that & halts with input
data b if and only if the UTM halts with input data b - b—a direct contradiction
to the result obtained a moment ago. Thus we conclude that there is no such
Halting Algorithm.

A much more technical and philosophically oriented approach to the
implications of the Turing-Church Thesis for both the psychology and the
philosophy of mathematics is presented in the volume

Webb, J. Mechanism, Mentalism, and Metamathematics. Dordrecht, Neth-
erlands: Reidel, 1980. '

In this connection, see also

Arbib,>M. Brains, Machines, and Matbematics. 2nd ed. New York:
Springer, 1987.

The Turing-Church Thesis lies at the heart of the currently fashionable
artificial intelligence debate, which revolves about the question of whether
or not a computer can think like a human being. Jf human thought processes
can be shown to all be “effective,” and if the Turing-Church Thesis is correct,
then it necessarily follows that there is no barrier, in principle, between the
“thought processes” of machines and those of humans. But both of these ifs
are very big ifs indeed, and no one has yet been able to give a knockdown
argument resolving either half of this conundrum. For an account of the

current state of play, as well as an extensive bibliography on the whole issue,
see Chapter Five of , :

Casti, J. Paradigms Lost: Images of Man in the Mirror of Science. New York:
Morrow, 1989 (paperback edition: Avon Books, New York, 1990).

For the inquisitive layman looking for a more detailed account of the players
in the Al game, the following volume can be highly recommended:

Johnson, G. Machinery of the Mind. New York: Times Books, 1986.
Trutb Is Stranger Than Proof

Godel's results are recounted in many places, including the Hofstadter
volume noted above. Other popular accounts include Chapter Six of

Casti, J. Searching for Certainty: What Scientists Can Know About the
Future. New York: Morrow, 1991 (paperback edition: Quill, New York, 1992).
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The following works also contain much material of general interest in this
regard:
Rucker, R. Infinity and the Mind. Boston: Birkhduser, 1982.

Hofstadter, D. “Analogies and Metaphors to Explain Godel's Theorem.”
College Mathematics Journal 13 (March 1982), 98-114.

Nagel, E. and J. R. Newman. Godel's Proof. New York: New York University
Press, 1958. ' ighening
i i 5del's pioneering paper, with an enli
gcr::f:rﬁl 1211} lt:;:nlsiz?cc);nolf)e(}?:frllg ﬁl the ﬁrs% \r')olrflme of Godel’s collected

works:
Kurt Gédel: Collected Works. Volume 1, S. Feferman et al., eds. New York:
Oxford University Press, 1986.

Another source for the original paper, together with commentary, is

Godel, K. On Formally Undecidable Propositions of Principia M'athern.a.tica
and Related Systems. New York: Basic Books, 1962 (Dover reprint edition,
1992).

An assessment of Gédel's Theorem from a philosophical and mathematical
point of view is contained in the collection of reprints

Gédel’s Theorem in Focus. S. Shanker, ed. London: Croom & Helm, 1988.

People often wonder whether or not long-standing, seemingly intractabl.e
mathematical questions like Goldbach’s Conjecture (every even number is
the sum of two primes) are undecidable in t}}e same way that Cantor’s
Continuum Hypothesis turned out to be undecxdilble. Musings of this sort
give rise to the consideration of whether or not Godel's results. really matter
to mathematics, in the sense that there are important matl.le-:mancal questions
that are truly undecidable. With the recent work of Chaitin and others, Fhe
comforting belief that there are no such problems seems a lot less.comfom.ng
than it used to. For a discussion of some other “real” mathematical queries
that are genuinely undecidable, see

Kolata, G. “Does Godel's Theorem Matter to Mathematics?” Science 218
(November 19, 1982), 779-780.

Many details of Godel’'s personality, views on life and philosophy, w'ith an
assessment of his mathematical and philosophical work, are found in the
following book written by the well-known mathematical logician Hao Wang,
who was a long-time acquaintance of Godel:

Wang, H. Reflections on Kurt Godel. Cambridge, Mass.: MIT Press, 1987.
Additional information about Gédel’s life is given in

Dawson, J. “Kurt Godel in Sharper Focus.” Mathematical Intelligencer 6,
no. 4 (1984), 9-17.

Kreisel, G. “Kurt Godel: 1906-1978.” Biographical Memoirs of Fellows of
the Royal Society 26 (1980), 148-224.
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The ideas underlying Gédel numbering are given in the Nagel and Newman
book noted above. :

Out-Godeling Godel

The complete story of Chaitin’s independent discovery of algorithmic com-
plexity and its connection with randomness is contained in his collection of
papers

Chaitin, G. Information, Randomness, and Incompleteness. 2nd ed. Sin-
gapore: World Scientific, 1990.

Quite independently, the famous Russian mathematician Andrei Kolmogorov
also hit upon the idea of defining the randomness of a number by the length

of the shortest computer program required to calculate it. His ideas were
presented in

Kolmogorov, A. “Three Approaches to the Quantitative Definition of
Information.” Problems in Information Transmission 1 (1965), 3-11.

The original formulation of Berry’s Paradox involved a statement like “The
smallest number that cannot be expressed .in fewer than thirteen words.”
Since the preceding phrase contains twelve words, the paradox follows for
exactly the same reasons as given for the more general phrase used in the
text. A fairly complete account of the Berry Paradox and its relationship to
complexity and Godelian logic is available in the Rucker book Infinity and
the Mind already noted. This volume also contains the background assump-
tions supporting Rucker’s claim that 3 billion is an upper limit to the
complexity of phenomena that the human mind can rationally encompass
and comprehend.

As promised in the text, here is an outline of the proof showing that for
sufficiently large N, there can be no proof that a particular string has
complexity greater than N. Suppose we have a binary string that we suspect
of having complexity greater than some fixed level N and we want to prove
it. Assume such proofs exist. Then, since it takes only log N symbols to
represent a number having magnitude N, we can use a program of length
log N+ K to search for these proofs. Here K is a quantity of fixed size thrown
in to represent the overhead in the program for things like reading in the
number N, communicating with the printer and so on. With this program we
can search through all proofs of length 1, length 2 and so on until we come
to the one that proves that the complexity of a specific number is greater
than N. When such a proof is found, the program of length log N + K will
have generated a string of complexity greater than N. But there will always
be some number N such that N is much larger than log N+ K, since K is
fixed. Thus, on the one hand we have computed a string of complexity N
with a program having a length much shorter than V. On the other hand, we
have proved that the string has complexity greater than N, which by definition
can only be computed with a program of length greater than N—a contra-
diction. Thus, we conclude that there can be no such proof.

The arguments linking Chaitin’s Theorem, Gédel’s Theorem and chaos
were first presented in
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Casti, J. “Chaos, Godel and Truth,” in Beyond Belief Randomness,

Explanation and Prediction in Science, J. Casti and A. Karlqvist, eds. Boca
Raton, Fla.: CRC Press, 1991, 280~327.
By the isomorphism between formal systems and dynamical systems, it
should come as no surprise to learn that almost every interesting property of
a dynamical system is undecidable. For instance, it's undecidable whether
the dynamics is chaotic, whether a trajectory starting from a specific point
eventually passes through a given region of state space, whether the
equations are integrable and so forth. Ian Stewart’s Rapidly Accelerating
Computer and its connection with these undecidability results for dynamical
systems is explored further in

Stewart, I. “The Dynamics of Impossible Devices.” Nonlinear Science
Today 1 (1991), 8-9.

The article points out that the reason dynamical systems have such strong
undecidability properties is that they are so versatile they can model the
computational process itself.

Real Brains, Artificial Minds
Turing’s proposal of the Imitation Game as an objective test of machine
intelligence was first put forward in the pioneering article

Turing, A. “Computing Machinery and Intelligence.” Mind 59 (1950),
433460 (reprinted in Minds and Machines, A. Anderson, ed. Englewood
Cliffs, N.J.: Prentice-Hall, 1964, 4-30).

A good account of the current state of play in the strong Al business is given
in the works

The Artificial Intelligence Debate. S. Graubard, ed. Cambridge, Mass.: MIT
Press, 1988.

Denning, P. “The Science of Computing: Is Thinking Computable?”
American Scientist 78 (March—April 1990), 100-102.

Ned Block’s argument against the Turing test was first proposed in the article

Block, N. “Psychologism and Behaviorism.” Philosophical Review 90
(1981), 43-59.
The strengths and (especially) the weaknesses of the Top Down program for
strong Al are tallied in

Dreyfus, H. and S. Dreyfus. “Making a Mind Versus Modeling the Brain:
Artificial Intelligence Back at a Branchpoint,” in The Antificial Intelligence
Debate, S. Graubard, ed. Cambridge, Mass.: MIT Press, 1988, 15-43.
Bottom Up work on thinking machines via the route of neural networks is
considered in

Crick, F. “The Recent Excitement About Neural Networks.” Nature 337
(January 12, 1989), 129-132.

Minsky, M. The Society of Mind. New York: Simon & Schuster, 1986.
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Rumelhart, D. and J. McClelland. Parallel Distributed Processi
& 2. Cambridge, Mass.: MIT Press, 1986. ribused essing. Vols. 1

Johnson, G. Palaces of Memory. New York: Knopf, 1991.

The debate between the computer scientists and the philosophers on the

(de)merits ) ; X X
edu)cagcll lasfn:::ong Al is encapsulated in the following article for the

“Artificial . ) » e .
19_3Amf1‘ ial Intelligence: A Debate. Scientific American, January 1990,

The phenomenological argument of the Dre i
: s b
Al is summarized in the volumes yus brothers against Top Down

l%%reyﬁls, H. and S. Dreyfus. Mind Over Matter. New York: The Free Press,

199]3reyfus, H. What Computers Still Can't Do. Cambridge, Mass.: MIT Press

John Searle has presented the ins and outs of his Chi

. r inese Room ar, t
ag:hmst strong Al in many forums. Here is a sampling of the best, gtl:gi?g
with the original article that sparked off the whole antibehaviorist debate:

Searle. 1. “Mi . _ ” . .
3 (1(93?3{) ;:’, 117122;1'5, Brains and Programs.” Bebavioral and Brain Sciences

Searle, J. “Cognitive Science and the Com i
rle, gni puter Metaphor,” in Under-
standing the Artificial, M. Negrotti, ed. London: Springer, i)991, 127—-138.er

Searle. |. Mi . ) . .
Prees r1 ;’8{1 ‘Mmds, Brains and Science. Cambridge, Mass.: Harvard University

Searle, J. The Rediscovery of the Mind. Cambridge, Mass.: MIT Press, 1992.

Appeals to Godel’s Theorem as the basis for an anti iti
. anti-Al position have al
filled the literature. The most prominent such argumengoare the oxigzilnsﬁ

position taken by Lucas, together with its re i i
, cent reincamati
Penrose. The two sources are on by Roger

Lucas, J. “Minds, Machines and Gédel.” Philosoph 6
(reprinted in Minds and Machines. A . L B & N,
Premtice Tl 1ocs 4r LM es. A. Anderson, ed. Englewood Cliffs, N J

Pen . ’s j i i
1088 rose, R. The Emperor’s New Mind. Oxford: Oxford University Press,

Minds, Machines and Evolution

'tgom Ray's remarkablg work showing the independence of the most impor-
ham Balésp(-:cts of Damlnlan evolution from any particular material substrate
s been reported in many places. Two of the most informative are

Ray, T. “An Approach to the Synthesi ife,” i ificial Lj
ynthesis of Life,” in Artificial Life—II C.
Langton et al, eds. Redwood City, Calif.: Addison-Wesley, {992, 37j;—408,.

- 21\;1;};131.::1@ Smith, J. “Byte-Sized Evolution.” Nature 355 (February 27, 1992),
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It's of more than passing interest that the same line of at.tack has i)gen
followed in the evolutionary “growth” of computer programs aimed at solving
definite classes of problems. For an account of these matters, see

Emergent Computation. S. Forrest, ed. Cambridge, Mass.: MIT Press, 1991.

Koza, J. Genetic Programming. Cambridge, Mass.: MIT Press, 1992.
Godel's statement about thinking machines is reported in the article

Rucker, R. “Towards Robot Consciousness.” Speculations in Science and
Technology 3 (1980), 205-217.

's almost no movement in modern science that’s .unfo,lyding at a more
}e}gf;aie than the development of artificial life. The “b1ble§ of the field are
the published proceedings from the first two international meetings on the topic,
both held in Santa Fe, New Mexico, in 1987 and 1989. The references are

Antificial Life. C. Langton, ed. Redwood City, Calif.: Addison-Wesley, 1989.
Artificial Life—II. C. Langton et al.,, eds. Redwood City, Calif.: Addison-
Wesley, 1992. N
A popular account of the historical development of the field is entertainingly
presented in
Levy, S. Artificial Life. New York: Pantheon, 1992.
Steen Rasmussen’s postulates underpinning the belief in such a thing as an
artificial organism were first reported in

“ of Information, Life, Reality and Physics,” in
Aﬂ}:f?cs:?;lllsls;zy—il, CAs iI).:irclt;ton et al.,, eds. Redwood City, Calif.: Addison-
Wesley, 1992, 767-773.
For a discussion of the parallels between the research programs of the A-lifers
and the strong Alers, see N

“ i Functionalism: Prospects for Strong Artificial ,

in fi(:z;izii} I%:;'Zf;zggoﬁngton et al., eds. Re%ewood City, Calif.: Addison-
Wesley, 1992, 749-765.

CHAPTER FIVE

Getting It Together

k i i i ility of trying to study
The quote by Ross Ashby, in which he points out t.he futility o !
cor‘;glex sys¥ems by varying one factor at a time, is taken from the following
book, which is about as good an introduction to the world of systems as any

1 know of:
Ashby, W. Ross. An Introduction to Cybernetics. London: Chapman & Hall,
1956.

The best possible accounts of the use of binary relations among sets to
describe the interconnections in systems are:
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Atkin, R. Mathematical Structure in Human Affairs. London: Heinemann,
1974. .

Atkin, R. Multidimensional Man. London: Penguin, 1981.

Both of these volumes pack an amazing variety of ideas and examples into
a small amount of space, giving the reader a heady overview of how to use

mathematical concepts in areas usually thought to be far outside the realm
of the rational and scientific.

In this same regard, see the works

Casti, J. Connectivity, Complexity and Catastropbe in Large Systems.
Chichester, England: John Wiley & Sons, 1979.

Gould, P. “Q-Analysis, or a Language of Structure: An Introduction for
Social Scientists, Geographers and Planners.” International Journal of Man-
Machine Studies 13 (1980), 169-199.

An up-to-date summary of the state of play vis-a-vis the uses of g-analysis to
study complex systems is found in

Johnson, J. “The Mathematics of Complex Systems,” in The Mathematical

Revolution Inspired by Computing, J. Johnson and M. Loomes, eds. Oxford:
Oxford University Press, 1991, 165-186.

The example using sets and relations to analyze the Middle East crisis is taken
from unpublished work by the author and Mel Shakun of New York
University. Some of it is described in more detail in Chapter Eight of

Casti, J. Reality Rules: Picturing the World in Mathematics, Il— The Frontier.
New York: Wiley, 1992.

Making Connections

For the chess aficionado, Chapter Three of the first Atkin book cited above
is must reading. For the more technical aspects of how to employ g-analysis
ideas to develop playing strategies, see the article

Atkin, R. and 1. Witten. “A Multi-dimensional Approach to Positional
Chess.” International Journal of Man-Machine Studies 7 (1975), 727-750.

The numbser of disjoint chains of g-connection in a complex give us a picture
of its overall geometry. However, these chains don’t tell us much about how
any individual simplex is integrated into the overall structure. For this, we
need what R. H. Atkin has called the “eccentricity” of a simplex. If we let
q be the geometric dimension of a simplex o, and denote by g the
lowest-dimensional face that o shares with any other simplex in the complex,
then Atkin defines the eccentricity of o to be
A

ecc o = ‘1“ 9
q+1

The rationale underlying this measure is that o is more “idiosyncratic” within
the complex if it has many vertices that it does not share with any other
simplex. But this difference is presumably more significant at lower-dimen-
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sional levels than at higher, so we normalize by dividing through by the
quantity ¢. In particular, if ¢ shares no vertices with any other simplex, then
g = -1, leading to an infinite eccentricity.

The Time of Your Life

One of the eeriest precognitive visions of the Titanic’s fate was the 1898
novel Futility, by the American writer Morgan Robertson. The story line
centered around the sinking of a supposedly unsinkable giant of a ship
named Titan. In the novel, the ship meets her downfall in the North Atlantic,
during the month of April, via collision with a large iceberg. And as if this
were not enough, the fine-grained details match as well. For example, the
Titan was traveling at 25 knots at the moment of collision, the Titanic at 23
knots; the Titan carried 3,000 passengers and crew, a large proportion of
whom were lost because the ship had too few lifeboats on board. And so
on and so forth. In short, way too much detail to be chalked up to mere
coincidence. For further details and examples of this sort of glimpse into the
future, including an account of Mrs. Marshall, see

Zohar, D. Through the Time Barrier. London: Heineman, 1982.

Trying to get a handle on time has been a human preoccupation at least as
long as people have been measuring things. And the puzzle looks no closer
to being solved today than when St. Augustine made his famous remark to
the effect that he understood perfectly well what time was so long as no one
asked him. Relatively recent works addressing what we think we know of
time today, scientifically speaking, include

The Nature of Time. R. Flood and M. Lockwood, eds. Oxford: Basil
Blackwell, 1986.

The Enigma of Time. P. Landsberg, ed. Bristol, England: Adam Hilger, 1982.
Shallis, M. On Time. London: Burnett Books, 1982.

For more information about the multidimensional concépt of time discussed
in the text, see the Atkin volume Multidimensional Man cited above, as well
as the article

Atkin, R. “Time as a Pattern on a Multi-dimensional Structure.” Journal of
Social & Biological Structures 1 (1978), 281-295.

Some Surprising Connections

For a layman’s account of the quantum measurement problem, see Chapter
Seven of

Casti, J. Paradigms Lost. New York: Morrow, 1989 (paperback edition:
Avon Books, New York, 1990).

The connection given in the text between classical probability theory and
simplicial complexes is discussed at greater lengths in the Atkin volume
Multidimensional Man, cited earlier. See also Appendix C of Atkin’s Mathe-
matical Structures in Human Affairs for a worked-out example of a situation
in which the complex associated with a die-tossing experiment has “holes.”
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This example shows the utility of thinking of probability theory in multidi-
mensional terms. .
As promised in the text, here is Atkin’s measure of the surprise of a g-event
o, relative to a p-dimensional base event cg :
0
n
surp(c, mod 0’2) = _.4_(9_‘]_’91;)
p+1
whert_e nfc, .co) is the number of disjoint g-chains linking the event in
question o, wi the_ base event 6°. The satisfying fact is that this measure
of surprise agrees with the ordinary probability of an event—provided that
all events are 0-events! For a detailed discussion of these connections and
much, much more, see the pioneering article

Atkin, R. “A Theory of Surprises.” Environment and Planning B8 (1
350 ning (1981),

CHAPTER SIX
Checkerboard Computers

By all accounts, cellular automata seem to have first been developed by
mathematician Stanislaw Ulam in the late 1940s or thereabouts. When von
Neumann ran into difficulties with his initial attempts at solving the self-
reproduction problem, primarily on account of the mechanical complications
npherent in the scheme he was using, Ulam suggested a purely informa-
tion-theoretic approach to the question via CAs. The rest, as they say, is

history. A layman’s introduction to this circle of ideas can be found in the
volume

Levy, S. Artificial Life. New York: Pantheon, 1992.

Good introductions to cellular automata from a computational point of view
are

Toffoli, T. and N. Margolus. Cellular Automata Machi C i
Mass.: MIT Press, 1987. nes. Cambridge,

Cellular Automata: Theory and Experiment. H. Gutowitz, ed i
Mass.: MIT Press, 1991, 'z od. Cambridge,

For a semitechnical introduction to the entire field, along with applications
of CA in biology, languages and economics, see Chapter Three of

Casti, J. Reality Rules: Picturing the World in Mathematics. I—The Funda-
mentals. New York: Wiley, 1992.

Tom Sch?lling’s experiments on racial integration in urban housing are
reported in

Schelling, T. “Dynamic Models of Segregation.” Journal of M )
Sociology 1 (1971), 143-186. greg J of Mathematical

During the 1960s, CA fell out of favor with applied mathematicians, but in
the 1970s, work led by Stephen Wolfram revitalized the field. Niany of
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Wolfram’s pioneering efforts, along with those of other researchers, are
reported in the volume

Theory and Applications of Cellular Automata. S. Wolfram, ed. Singapore:
World Scientific Press, 1986.

Aristid Lindenmayer died in 1989. But his work on L-systems has been carried
on by his many students and co-workers. For an excellent summary of these
efforts, complete with a stunning collection of color plates displaying a
collection of plants seen only in the world inside the computer, the reader
should see the volume

Prusinkiewicz, P. and A. Lindenmayer. The Algorithmic Beauty of Planis.
New York: Springer, 1990.

That’s Life?
Von Neumann'’s proof of the possibility of self-reproducing automata is given in

Von Neumann, J. Theory of Self-Reproducing Automata. Urbana, Iil.:
University of Illinois Press, 1966.

Unfortunately, this original work is rather difficult to follow. Simpler accounts
of von Neumann’s ideas are presented from several points of view in the
collection

Essays on Cellular Automata. A. Burks, ed. Urbana, Ill.: University of
1llinois Press, 1970.

The idea of a living organism as a machine has proven irresistibly attractive
to scientists and philosophers since the time of Aristotle. Some more recent
perspectives on this eternal question are found in the papers

Laing, R. “Machines as Organisms: An Exploration of the Relevance of
Recent Results.” Biosystems 11 (1979), 201-215.

Laing, R. “Anomalies of Self-Description.” Synthese 38 (1978), 373-387.

As noted in the text, Conway’s Life game was brought to the attention of the
general public in a series of articles by Martin Gardner in Scientific American.
The complete set of Life articles, as well as a number of related topics, can
be found in

Gardner, M. Wheels, Life and Other Mathematical Amusements. San
Francisco: W. H. Freeman, 1983.

An informative, yet popular account of the Life game, together with computer
programs for playing it, is given in

Poundstone, W. The Recursive Universe. New York: Morrow, 1985,

This volume is also noteworthy for its extended discussion of the question
of self-reproducing Life patterns.

Von Neumann’s self-rep work, the Life game and L-systems formed the
precursors to what today is the thriving field of “artificial life.” Devotees are
united in the belief that what distinguishes living things from the nonliving
is their functional organization, not their material form. The artificial lifer’s
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“bible” is the volume containing the proceedings of the historic 1987 Los
Alamos conference, which brought the various strands of the A-life commu-
nity together for the first time. This work contains reports on theoretical
aspects of self-reproduction and what it means to be “alive,” as well as many
accounts of artificial lifeforms that are currently cavorting about in the memory
banks of computers across America and around the world. Operating on the
premise that one good workshop deserves another, the Santa Fe Institute
organized a second A-life workshop in February 1990 that continued the
tradition established in the path-breaking 1987 event. So for anyone wanting
to know about AL, the Levy book cited at the beginning of this chapter, as
well as the two proceedings volumes from these A-life workshops, are the
places to look. The precise citations are for the workshop volumes are

Artificial Life. C. Langton, ed. Redwood City, Calif.: Addison-Wesley, 1989.

Artificial Life—II. C. Langton et al, eds. Redwood City, Calif.: Addison-
Wesley, 1992.

{\nother ix}troductory volume containing much information on the goings-on
in the. A-life world, together with a computer diskette for performing a few
experiments of your own, is

Rietman, E. Creating Artificial Life. Blue Ridge Summit, Penn.: Wind-
crest/McGraw-Hill, 1993, )

The Most Complicated Thing in the World

The theory and application of fractals has become almost a cottage
industry by now, with the number of volumes on the topic, not to mention
computer programs, threatening to swamp scientific booksellers’ shelves.
Here are just a few of the better places to look for introductory accounts
of the coastline of Britain, Sierpinski gaskets and carpets, Julia sets and a
wlll;')le lot more, starting with Mandelbrot’s classic work that sparked off the
subject: '

Mandelbrot, B. The Fractal Geometry of Nature. San Francisco: W. H.
Freeman, 1982.

Peitgen, H.-O., D. H. Jirgens and D. Saupe. Fractals for the Classroom.
Parts 1 & 2. New York: Springer, 1992.

19951chr0eder, M. Fractals, Chaos, Power Laws. New York: W. H. Freeman,

Feder, J. Fractals. New York: Plenum, 1988.

Mapdelbrot, B. “On Fractal Geometry, and a Few of the Mathematical
Questions It Has Raised.” Proceedings of the International Congress of
Mathematicians, Warsaw, 1983, 1661-1675.

Just as with the catastrophe theory brouhaha a few years ago, fractal geometry
is not without its naysayers, claiming that fractals have neither answered any
old questions nor asked any new ones. Geometer Stephen Krantz of
Washington University in St. Louis is one of the more outspoken antifractal-
ists. He has not only attacked the subject itself but for good measure has
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thrown in a few ad hominem attacks on Mandelbrot himself. A summary of
these skirmishes in the trenches of science is found in

Bown, W. “Twisting the Fractal Knife.” New Scientist, September 29, 1990, 63.
A layman’s account of why the Mandelbrot set is the most complicated thing
in the world is given in the article

Bown, W. “Mandelbrot Set Is as Complex as It Could Be.” New Scientist,
September 28, 1991, 22.

From Bach to Rock and Bach Again

Frequencies in time and space that appear to be random on any scale underlie
many natural processes, leading to the so-called 1/f noise discussed in the
text. For a good introductory account of these matters, see the article

West, B. and M. Schlesinger. “The Noise in Natural Phenomena.” American
Scientist 78 (January—February 1990), 40—45.

A good account of Zipf's Law is found in the volume

Nicolis, J. Chaos and Information Processing. Singapore: World Scientific,
1991
The discussion of fractal music follows that given in the Schroeder book
above, as well as the journalistic account

Browne, M. “J. S. Bach + Fractals = New Music.” The New York Times, April
16, 1991.
See also the article

“White, Brown and Fractal Music,” in Gardner, M. Fractal Music, Hyper-
cards, and More. New York: W. H. Freeman, 1992.

Climbing tbe Devil’s Staircase

For more details on the relative merits of timid versus bold play in the casinos,
see the Schroeder and Feder volumes cited earlier.

A summary of Hurst's studies is given in the Feder volume. For the
complete story, see Hurst's original book,

Hurst, H., R. Black and Y. Simaika. Long-Term Storage: An Experimental
Study. London: Constable, 1951.

The world’s financial markets have always been a source of attraction for
scientists in the grip of a new theory, with the current explosion of interest
in chaos and fractals proving no exception. Most of the work reported in the
text is covered in the thought-provoking work

Peters, E. Chaos and Order in the Capital Markets. New York: Wiley, 1991.

For an introductory account of the ins and outs of the stock market, including
the conventional academic wisdom of efficient markets and what's wrong
with them, see Chapter Four of

Casti, J. Searching for Certainty. New York: Morrow, 1991 (paperback
edition: Quill, New York, 1992).
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William Brock, Blake LeBaron and their colleagues at the University of
Wisconsin have led the charge insofar as statistical investigations of chaotic
behavior in speculative markets goes. A good summary of this work is
reported in

Brock, W., D. Hsieh, and B. LeBaron. Nonlinear Dynamics, Chaos, and
Insiability: Statistical Theory and Economic Evidence. Cambridge, Mass.: MIT
Press, 1991.

l?rock, W. “Chaos and Complexity in Economic and Financial Science,” in
Acting Under Uncertainty: Multidisciplinary Conceptions, G. von Fursten-
berg, ed. Dordrecht, Netherlands: Kluwer, 1990, Chapter 17.

quck, W. “Causality, Chaos, Explanation and Prediction in Economics

and Finance,” in Beyond Belief: Randomness, Explanation and Prediction in

ggz’)e_nce, J. Casti and A. Karlgvist, eds. Boca Raton, Fla.: CRC Press, 1990,
279.

CHAPTER SEVEN

The Anatomy of Surprise

The Arrow Impossibility Theorem is probably the central result in what's
normally called social choice theory. It addresses the basic question How
can many individuals’ preferences be combined to yield a collective choice?
The theorem says, in essence, that there is no way to combine the individual
preferences so that everyone will be satisfied. One of the best sources for a
thorough discussion of Arrow’s Theorem is the work

MacKay, A. Arrow’s Theorem: The Paradox of Social Choice. New Haven:
Yale University Press,.1980. : ’

The discussion of Prisoner’s Dilemma situations and sports drafts follows that
given in the article

Brams, S. and P. Straffin. “Prisoners’ Dilemma and Professional Sports
Drafts.” American Mathematical Monthly 86 (1979), 80-88.

Here is an example to illustrate the point that when three or more teams are
involved, it's possible for a Prisoners Dilemma situation to arise. Suppose
there are three teams, A, B and C, with six players in the draft, 1-6. Suppose
the teams have the following preference orderings: Team A: 1 >2> 3> 4 >
5>6,TeamB:5>6>2>1>4>3 Team C:3>6>5>4 > 1> 2. Assume
the teams use sophisticated play and that there are two rounds, resulting in
the selections given in the following table:

TeamA TeamB TeamC

Round 1 3 5 6
Round 2 1 2
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However, if the teams had made sincere choices, they would have ended up
with the following allocation of players:

TeamA TeamB TeamC

Round 1 1
Round 2 2

o n
[N

Comparison of these two allocations shows that all three teams are worse
off by following sophisticated play than they would have been had they
chosen sincerely.

More information on the use of increasing returns to study industry
agglomeration is given in the article

Arthur, W. B. “Silicon Valley’ Locational Clusters: When Do Increasing
Returns Imply Monopoly?” Mathematical Social Sciences 19 (1990) 235-251.

Results showing the uncomputability of solutions of the wave equation and
many other important quantities in mathematics and physics are treated in
the volume

Pour-El, M. and J. Richards. Computability in Analysis and Physics. Berlin:
Springer Verlag, 1989.
A layman’s account of the five-particle system by which Z. Xia showed the
difficulty of the N-Body Problem is given in

Stewart, 1. “Cosmic Tennis Blasts Particles to Infinity.” New Scientist,
October 3, 1992, 14.

Stuart Kauffman’s work on genetic networks is described in detail in his many
books and articles. Good summaries are given in

Kauffman, S. Origins of Order. Oxford: Oxford University Press, 1992.

Kauffman, S. “Origins of Order in Evolution: Self-Organisation and Selec-
tion,” in Theoretical Biology, B. Goodwin and P. Saunders, eds. Edinburgh:
Edinburgh University Press, 1989, 67-88.

“Complexification”

For somewhat more detailed accounts of what it could be like to be a complex
system, the reader should consult the potpourri of ideas in the following
works:

Complexity, Language and Life. ]. Casti and A. Karlqvist, eds. Berlin:
Springer Verlag, 1986.

Lloyd, S. “The Calculus of Intricacy.” The Sciences, September~October
1990, 38—44.
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Lectures in the Sciences of Complexity. D. Stein, ed. Redwood Ci if :
Addison-Wesley, 1989, iprexity ) edw City, Calif.:

‘Casti,nj. “The; Simply Complex: Trendy Buzzword or Emerging New
fglflnace? Bulletin of the Santa Fe Institute 7, no. 1 (Spring-Summer 1992)

The Science of Surprise

It's difficult to think of a field more fashionable nowadays than complex
systems. But as noted in the text, the term complexity seems to mean many
dlfferent'thi.ngs to many different people. The idea of an actual science of
complexity is one currently being pursued at many research centers through-
out the world, especially at the Santa Fe Institute in New Mexico. For lively
accounts of the origin and development of this unique institution, see the
popular volumes ’

Waldrop, M. Complexity. New York: Simon & Schuster, 1992,
Lewin, R. Complexity. New York: Macmillan, 1992,

Shone{ inqo@uctow accounts are also given in supplements to New Scientist
magazine in its issues of February 6 and 13, 1993.

The mpdeling relation of Figure 7.1 is the diagram expressing the essence of
V\{hat it means to do theoretical science. An extended discussion: of this
diagram and its many implications for both physics and biology is found in:

Rosen, R. Life Itself. New York, Columbia University Press, 1991.

Further discussion of the idea that it is the number of inequivalent descrip-
tions of a system that determines its complexity is given in Chapter One of

Casti, J. Reality Rules: Picturing the World in Mathematics. I—The Funda-
mentals. New York: Wiley, 1992.
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